论文标题
Unimon Qubit
Unimon qubit
论文作者
论文摘要
超导码头是实施量子计算机的最有前途的候选者之一。超导量子计算机比任何经典设备在模拟随机但确定的量子电路中的优越性已经在两个独立的实验中显示,并且在量子误差校正中已采取了重要步骤。但是,目前广泛的Qubit设计尚未提供足够高的性能,可以实现实际应用或有效地缩放逻辑QUBIT,这是由于一个或几个问题:对充电或通量噪声的敏感性导致反谐波,导致弱的非线性,无法快速操作,可以防止快速操作,令人难以置信的浓度兴奋的兴奋谱,或复杂的设计易于设计易于设计。在这里,我们介绍并演示了一种超导量类型的Unimon,它结合了高非线性,对直流电荷噪声的完全不敏感,对通量噪声的不敏感性以及仅由响应器中的Josephson交界处组成的简单结构。我们测量量子频率,$ω_{01}/(2π)$,以及在完整的DC-Flux范围内的Anharmonicity $α$,并且与我们的量子模型一致,即量子的非谐度在最佳操作点上大大增强,例如99.9%和99.8%的fifelity for 99.9%fifelity for 13 n-s-quit for 13 n-s-quit, $(ω_{01},α)=(4.49〜 \ MATHRM {GHz},434〜 \ MATHRM {MHz})\ TIME TIMES2π$和$(3.55〜 \ MATHRM {GHZ},744〜 \ MATHRM {MHz})能量放松时间$ T_1 \ Lessim 10〜μ \ Mathrm {S} $数小时稳定,并且似乎受介电损耗的限制。因此,未来的设计,材料和栅极时间的改进可能会促进单词,以打破99.99%的保真度目标,以实现有效的量子误差校正和噪音系统的可能量子优势。
Superconducting qubits are one of the most promising candidates to implement quantum computers. The superiority of superconducting quantum computers over any classical device in simulating random but well-determined quantum circuits has already been shown in two independent experiments and important steps have been taken in quantum error correction. However, the currently wide-spread qubit designs do not yet provide high enough performance to enable practical applications or efficient scaling of logical qubits owing to one or several following issues: sensitivity to charge or flux noise leading to decoherence, too weak non-linearity preventing fast operations, undesirably dense excitation spectrum, or complicated design vulnerable to parasitic capacitance. Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. We measure the qubit frequency, $ω_{01}/(2π)$, and anharmonicity $α$ over the full dc-flux range and observe, in agreement with our quantum models, that the qubit anharmonicity is greatly enhanced at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13-ns single-qubit gates on two qubits with $(ω_{01},α)=(4.49~\mathrm{GHz}, 434~\mathrm{ MHz})\times 2π$ and $(3.55~\mathrm{GHz}, 744~\mathrm{ MHz})\times 2π$, respectively. The energy relaxation time $T_1\lesssim 10~μ\mathrm{s}$ is stable for hours and seems to be limited by dielectric losses. Thus, future improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible quantum advantage with noisy systems.