论文标题

使用基于变压器的深钢筋学习框架进行切片特异性快速扫描的主动相位编写选择

Active Phase-Encode Selection for Slice-Specific Fast MR Scanning Using a Transformer-Based Deep Reinforcement Learning Framework

论文作者

Liu, Yiming, Pang, Yanwei, Jin, Ruiqi, Wang, Zhenchang

论文摘要

目的:在形成完整的K空间矩阵的相位编码中长时间扫描时间是MRI的关键缺点,使患者感到不舒服,并浪费了诊断出紧急疾病的重要时间。本文旨在通过在短时间内积极和顺序选择部分阶段来减少扫描时间,以便可以从所得的切片特异性不完整的K-Space矩阵中准确地重建切片。方法:根据基于重建质量的Q值(奖励的函数),提出了一个基于变压器的深钢筋学习框架,用于积极确定部分阶段的顺序,其中奖励是重建图像质量的改善程​​度。 Q值是通过二进制相位指示灯,不完整的K空间矩阵及其相应的带有轻量重量变压器的相应的不采样图像来有效预测的,因此可以使用相位相位的顺序信息和图像中的整体关系。逆傅里叶变换用于有效地计算出不采样的图像,从而获得选择阶段的回报。结果:具有原始K空间数据的FastMRI数据集的实验结果证明了提出的方法的效率和准确性优势。与Pineda等人提出的基于最先进的增强学习方法相比,所提出的方法大约更快,大约150倍,并且可以显着提高重建精度。结论:我们提出了一个基于轻型变压器的深层增强学习框架,用于产生由少数阶段组成的高质量切片特异性轨迹。所提出的方法称为标题(变压器涉及轨迹学习),在相位编写选择效率和图像重建精度方面具有显着优越性。

Purpose: Long scan time in phase encoding for forming complete K-space matrices is a critical drawback of MRI, making patients uncomfortable and wasting important time for diagnosing emergent diseases. This paper aims to reducing the scan time by actively and sequentially selecting partial phases in a short time so that a slice can be accurately reconstructed from the resultant slice-specific incomplete K-space matrix. Methods: A transformer based deep reinforcement learning framework is proposed for actively determining a sequence of partial phases according to reconstruction-quality based Q-value (a function of reward), where the reward is the improvement degree of reconstructed image quality. The Q-value is efficiently predicted from binary phase-indicator vectors, incomplete K-space matrices and their corresponding undersampled images with a light-weight transformer so that the sequential information of phases and global relationship in images can be used. The inverse Fourier transform is employed for efficiently computing the undersampled images and hence gaining the rewards of selecting phases. Results: Experimental results on the fastMRI dataset with original K-space data accessible demonstrate the efficiency and accuracy superiorities of proposed method. Compared with the state-of-the-art reinforcement learning based method proposed by Pineda et al., the proposed method is roughly 150 times faster and achieves significant improvement in reconstruction accuracy. Conclusions: We have proposed a light-weight transformer based deep reinforcement learning framework for generating high-quality slice-specific trajectory consisting of a small number of phases. The proposed method, called TITLE (Transformer Involved Trajectory LEarning), has remarkable superiority in phase-encode selection efficiency and image reconstruction accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源