论文标题
所有最高权重模块的权重成型和高阶抛物线类别$ \ mathcal {o} $
A weight-formula for all highest weight modules, and a higher order parabolic category $\mathcal{O}$
论文作者
论文摘要
令$ \ mathfrak {g} $成为一个复杂的kac-moody代数,带有cartan subalgebra $ \ mathfrak {h} $。还要修复\ mathfrak {h}^*$中的重量$λ\。对于$ m(λ)\ tweatheadrightArrow v $一个任意的最高权重$ \ mathfrak {g} $ - 模块,我们为$ v $的权重提供了无取消的非恢复公式。这甚至在有限类型中也是新颖的,并且是从$λ$和一个与$ v $相关的$ \ mathfrak {g} $的dynkin图中的独立集的$ \ mathcal {h} = \ mathcal {h} = \ mathcal {h} _v $获得的。 我们的证明使用并揭示了“高阶Verma模块”的有限家族(对于每个$λ$)$ \ MATHBB {M}(λ,\ Mathcal {h})$ - 这些都是重量调节的通用模块。他们(i)概括并集中抛物线抛物线模块$ m(λ,j)$和(ii)具有成对不同的重量集,这耗尽了所有模块的重量集$ m(λ)\ tixheadHeadReftRightArrow v $。作为一个应用程序,我们解释了Lepowsky的模块$ m(λ)$和$ m(λ,j_v)$的意义,分别是每个$ v $的零件和一阶上阶较高的上限,并将继续更高阶,并继续更高阶,并将上阶的上订单上级上限$ \ mathbb {m} _k(mathc $λ,\ mathcal(and})较低的附属物)。我们确定$ v $的每$ k $ th订单集成性。 然后,我们介绍类别$ \ MATHCAL {O}^\ MATHCAL {H} \ subset \ Mathcal {O} $,这是一个更高阶抛物线词,包含更高阶的Verma模块$ \ MATHBB {M MATHBB {M}(λ,λ,\ Mathcal {H})$。我们表明,$ \ MATHCAL {O}^\ MATHCAL {H} $具有足够的预测,并且还通过证明所有$ \ Mathcal {O}^\ Mathcal {h} $在$ \ Mathfrak {g} = \ Mathfrak} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ n} $ {最后,在某些情况下,包括所有级别3 $ \ mathfrak {g} $,我们为我们的通用模块$ \ mathbb {m}(λ,\ mathcal {h})$提供了BGG分辨率;这产生了其Weyl型特征公式,并具有抛物线Weyl Semigroups的作用。
Let $\mathfrak{g}$ be a complex Kac-Moody algebra, with Cartan subalgebra $\mathfrak{h}$. Also fix a weight $λ\in\mathfrak{h}^*$. For $M(λ)\twoheadrightarrow V$ an arbitrary highest weight $\mathfrak{g}$-module, we provide a cancellation-free, non-recursive formula for the weights of $V$. This is novel even in finite type, and is obtained from $λ$ and a collection $\mathcal{H}=\mathcal{H}_V$ of independent sets in the Dynkin diagram of $\mathfrak{g}$ that are associated to $V$. Our proofs use and reveal a finite family (for each $λ$) of "higher order Verma modules" $\mathbb{M}(λ,\mathcal{H})$ - these are all of the universal modules for weight-considerations. They (i) generalize and subsume parabolic Verma modules $M(λ,J)$, and (ii) have pairwise distinct weight-sets, which exhaust the weight-sets of all modules $M(λ)\twoheadrightarrow V$. As an application, we explain the sense in which the modules $M(λ)$ of Verma and $M(λ,J_V)$ of Lepowsky are respectively the zeroth and first order upper-approximations of every $V$, and continue to higher order upper-approximations $\mathbb{M}_k(λ,\mathcal{H}_V)$ (and to lower-approximations). We determine every $k$th order integrability of $V$. We then introduce the category $\mathcal{O}^\mathcal{H}\subset\mathcal{O}$, which is a higher order parabolic analogue that contains the higher order Verma modules $\mathbb{M}(λ,\mathcal{H})$. We show that $\mathcal{O}^\mathcal{H}$ has enough projectives, and also initiate the study of BGG reciprocity, by proving it for all $\mathcal{O}^\mathcal{H}$ over $\mathfrak{g}=\mathfrak{sl}_2^{\oplus n}$. Finally, we provide a BGG resolution for our universal modules $\mathbb{M}(λ,\mathcal{H})$ in certain cases including all rank-3 $\mathfrak{g}$; this yields their Weyl-type character formulas, with the actions of parabolic Weyl semigroups.