论文标题
互联网上的语言模型通过几次提示开放域问题回答
Internet-augmented language models through few-shot prompting for open-domain question answering
论文作者
论文摘要
在这项工作中,我们旨在利用大规模语言模型(LSLMS)独特的几次射击功能,以克服其对事实和最新信息的挑战。由半参数语言模型(LMS)激励,在外部检索证据中做出决策,我们使用很少的促使他们使用Google Search(一种广泛且不断更新的知识源)学习从Web返回的信息来调节LMS。我们的方法不涉及微调或学习其他参数,因此使其适用于任何LM,因此提供了强大的基线。确实,我们发现,在开放域问题回答中,LMS以类似的模型大小或更大的模型大小为基于Web的封闭式模型的闭合书籍。最后,我们发现,增加模型的推理时间计算,通过使用多个检索的证据来生成多个答案,然后是使用同一LMS产生的分数的重新依据阶段,从而可以提高性能,从而减轻较小的较小少数LMS的性能较低。总而言之,我们的发现表明,放慢竞赛迈向最大模型可能是有益的,而是将注意力转向寻找更有效的模型的方法,包括但不限于更好地提示或增加推理时间计算。
In this work, we aim to capitalize on the unique few-shot capabilities of large-scale language models (LSLMs) to overcome some of their challenges with respect to grounding to factual and up-to-date information. Motivated by semi-parametric language models (LMs), which ground their decisions in external retrieved evidence, we use few-shot prompting to learn to condition LMs on information returned from the web using Google Search, a broad and constantly updated knowledge source. Our approach does not involve fine-tuning or learning additional parameters, thus making it applicable to any LM, offering therefore a strong baseline. Indeed, we find that LMs conditioned on the web surpass performance of closed-book models of similar, or even larger, model sizes in open-domain question answering. Finally, we find that increasing the inference-time compute of models, achieved via using multiple retrieved evidences to generate multiple answers followed by a reranking stage that uses scores generated by the same LMs, leads to better performance and alleviates lower performance of smaller few-shot LMs. All in all, our findings suggest that it might be beneficial to slow down the race towards the biggest model and instead shift attention towards finding more effective ways to use models, including but not limited to, better prompting or increasing inference-time compute.