论文标题
中微子 - 液压变异性,核末期变异性及其明显的关系
Neutrino-Flux Variability, Nuclear-Decay Variability, and Their Apparent Relationship
论文作者
论文摘要
霍姆斯塔克(Homestake),Gallex和GNO数据揭示了太阳中微子通量的差异。 1996 - 2001年的Kamiokande记录揭示了9.43和12.6 yr $^{ - 1} $的振荡,在范围内(6-16 yr $^{ - 1} $),根据HelioseStology,可能与内部太阳能旋转有关。在布鲁克黑文国家实验室(1982 - 86年)进行的核定期实验显示,11.2和13.2 yr $^{ - 1} $的强烈振荡。在A. parkhomov进行的核 - 周期测量中也发现了类似的振荡。相比之下,S。Pomme指出,标准实验室的核定期实验往往不会表现出可变性。一系列最广泛的核 - 纪念测量结果来自G. Steinitz在以色列地质调查局(2007-16)上发起的实验,该实验记录了3个伽马检测器和3个环境传感器中的每个rads相关的测量值340,000。对85,000小时伽马测量值的子集的分析表明,许多振荡频率与内部太阳旋转的影响兼容。伽马与环境测量之间没有相关性。太阳能内部磁场可能会导致RSFP(共振型培养基进液)机制的中微子调节。一个振荡(7.43、8.43和9.43 yr $^{ - 1} $)的三联体可以归因于内部区域(大概是核心),其恒星旋转速率为8.43 yr $^{ - 1} $,旋转轴向旋转的旋转速率大致正向photosphere。这表明太阳在多个以上的星际材料的凝结阶段(一种在另一个阶段),这可能导致具有不同金属性,旋转速率和轴的当今层。峰调制发生在6月初的当地午夜附近,这表明宇宙中微子的作用。这些中微子可以提供归因于暗物质的质量,中微子质量为0.1 eV。
Homestake, Gallex and GNO data reveal variability of the solar neutrino flux. Kamiokande records for 1996-2001 reveal oscillations at 9.43 and 12.6 yr$^{-1}$, well within a range (6-16 yr$^{-1}$) that, according to helioseismology, may be related to internal solar rotation. A nuclear-decay experiment at Brookhaven National Laboratory (for 1982-86) reveals strong oscillations at 11.2 and 13.2 yr$^{-1}$. Similar oscillations are found in nuclear-decay measurements conducted by A. Parkhomov. By contrast, S. Pomme points out that nuclear-decay experiments at standards laboratories tend not to exhibit variability. The most extensive series of nuclear-decay measurements comes from an experiment initiated by G. Steinitz at the Geological Survey of Israel (2007-16), which recorded 340,000 radon-related measurements from each of 3 gamma detectors and 3 environmental sensors. Analysis of a subset of 85,000 hourly gamma measurements reveals a number of oscillation frequencies compatible with influences of internal solar rotation. There is no correlation between the gamma and environmental measurements. The solar internal magnetic field may lead to neutrino modulation by the RSFP (Resonant Spin-Flavor Precession) mechanism. A triplet of oscillations (7.43, 8.43 and 9.43 yr$^{-1}$) may be attributed to an internal region (presumably the core) with a sidereal rotation rate of 8.43 yr$^{-1}$ and a rotation axis roughly orthogonal to that of the photosphere. This suggests that the Sun had its origin in more than one stage of condensation of interplanetary material (one on top of another), which could lead to present-day layers with different metallicities, rotation rates and axes. The peak modulation occurs near local midnight in early June, suggestive of a role of cosmic neutrinos. These neutrinos could provide the mass attributed to dark matter for a neutrino mass of order 0.1 eV.