论文标题

解决布尔可满足性问题的机器学习方法

Machine Learning Methods in Solving the Boolean Satisfiability Problem

论文作者

Guo, Wenxuan, Yan, Junchi, Zhen, Hui-Ling, Li, Xijun, Yuan, Mingxuan, Jin, Yaohui

论文摘要

本文借助机器学习技术回顾了有关解决布尔值可满足性问题(SAT)的最新文献,这是一种原型的NP核算问题。尽管现代SAT求解者在解决大型工业实例方面取得了巨大的成功,但手工制作的启发式方法的设计既耗时又经验。在这种情况下,灵活而表现力的机器学习方法为解决这个长期存在的问题提供了适当的替代方法。我们检查了从具有手工制作功能的天真分类器到新兴的端到端SAT求解器(例如NeuroSat)的不断发展的ML-SAT求解器,以及使用机器学习方法的现有CDCL和本地搜索求解器的组合的最新进度。总体而言,使用机器学习解决SAT是一个有前途但充满挑战的研究主题。我们总结了当前作品的局限性,并提出了可能的未来方向。

This paper reviews the recent literature on solving the Boolean satisfiability problem (SAT), an archetypal NP-complete problem, with the help of machine learning techniques. Despite the great success of modern SAT solvers to solve large industrial instances, the design of handcrafted heuristics is time-consuming and empirical. Under the circumstances, the flexible and expressive machine learning methods provide a proper alternative to solve this long-standing problem. We examine the evolving ML-SAT solvers from naive classifiers with handcrafted features to the emerging end-to-end SAT solvers such as NeuroSAT, as well as recent progress on combinations of existing CDCL and local search solvers with machine learning methods. Overall, solving SAT with machine learning is a promising yet challenging research topic. We conclude the limitations of current works and suggest possible future directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源