论文标题

模块:知识图的模块嵌入

ModulE: Module Embedding for Knowledge Graphs

论文作者

Chai, Jingxuan, Shi, Guangming

论文摘要

知识图嵌入(KGE)已被证明是预测知识图缺失链接的强大工具。但是,现有方法主要集中于建模关系模式,而仅将实体嵌入到矢量空间,例如真实场,复杂场和季节空间。为了从更严格和理论的角度来对嵌入空间进行建模,我们提出了一个基于旋转的模型的新型一般群体理论嵌入框架,其中实体和关系均被嵌入为组元素。此外,为了探索更多可用的KGE模型,我们使用了更通用的组结构,模块,矢量空间的概括概念。具体来说,在我们的框架下,我们引入了一种更通用的嵌入方法,即模块,该方法将实体投射到模块。遵循模块的方法,我们构建三个实例化模型:模块$ _ {\ MathBb {r},\ Mathbb {C}} $,Module $ _ {\ MathBb {r},\ Mathbb {H Mathbb {h}}} $ y Module $ _ {结构。实验结果表明,模块$ _ {\ mathbb {h},\ mathbb {h}} $,将实体嵌入了非交换环上的模块中,在多个基准数据集中实现了先进的性能。

Knowledge graph embedding (KGE) has been shown to be a powerful tool for predicting missing links of a knowledge graph. However, existing methods mainly focus on modeling relation patterns, while simply embed entities to vector spaces, such as real field, complex field and quaternion space. To model the embedding space from a more rigorous and theoretical perspective, we propose a novel general group theory-based embedding framework for rotation-based models, in which both entities and relations are embedded as group elements. Furthermore, in order to explore more available KGE models, we utilize a more generic group structure, module, a generalization notion of vector space. Specifically, under our framework, we introduce a more generic embedding method, ModulE, which projects entities to a module. Following the method of ModulE, we build three instantiating models: ModulE$_{\mathbb{R},\mathbb{C}}$, ModulE$_{\mathbb{R},\mathbb{H}}$ and ModulE$_{\mathbb{H},\mathbb{H}}$, by adopting different module structures. Experimental results show that ModulE$_{\mathbb{H},\mathbb{H}}$ which embeds entities to a module over non-commutative ring, achieves state-of-the-art performance on multiple benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源