论文标题

睡眠阶段分类的深度学习:修改的整流线性单位激活功能和修改正交重量初始化

Deep Learning for Sleep Stages Classification: Modified Rectified Linear Unit Activation Function and Modified Orthogonal Weight Initialisation

论文作者

Bhusal, Akriti, Alsadoon, Abeer, Prasad, P. W. C., Alsalami, Nada, Rashid, Tarik A.

论文摘要

背景和目的:每个睡眠阶段都会影响人类健康,并且在任何阶段都无法获得足够的睡眠可能导致副作用,呼吸暂停,失眠等。与睡眠有关的疾病可以使用卷积神经网络分类器进行诊断。但是,由于高复杂性和分类的准确性较低,该分类器尚未成功地实施到睡眠阶段分类系统中。这项研究的目的是提高准确性并减少卷积神经网络分类器的学习时间。方法论:拟议的系统使用了修改的正交卷积神经网络和改进的ADAM优化技术来提高睡眠阶段分类的精度并减少由于Sigmoid激活函数而发生的梯度饱和问题。所提出的系统使用泄漏的整流线性单元(RELU)而不是Sigmoid激活函数作为激活函数。结果:所提出的称为增强睡眠阶段分类系统(ESSC)的系统使用六个不同的数据库来训练和测试不同睡眠阶段的拟议模型。这些数据库是都柏林大学数据库(UCD),贝丝以色列执事医疗中心MIT数据库(MIT-BIH),睡眠欧洲数据格式(EDF),睡眠EDF扩展,蒙特利尔睡眠研究(MASS)和睡眠心脏健康研究(SHHS)。我们的结果表明,梯度饱和问题不再存在。修改后的Adam优化器有助于降低噪声,进而导致收敛时间更快。结论:与最先进的解决方案相比,ESSC的收敛速度与更好的分类精度一起增加。

Background and Aim: Each stage of sleep can affect human health, and not getting enough sleep at any stage may lead to sleep disorder like parasomnia, apnea, insomnia, etc. Sleep-related diseases could be diagnosed using Convolutional Neural Network Classifier. However, this classifier has not been successfully implemented into sleep stage classification systems due to high complexity and low accuracy of classification. The aim of this research is to increase the accuracy and reduce the learning time of Convolutional Neural Network Classifier. Methodology: The proposed system used a modified Orthogonal Convolutional Neural Network and a modified Adam optimisation technique to improve the sleep stage classification accuracy and reduce the gradient saturation problem that occurs due to sigmoid activation function. The proposed system uses Leaky Rectified Linear Unit (ReLU) instead of sigmoid activation function as an activation function. Results: The proposed system called Enhanced Sleep Stage Classification system (ESSC) used six different databases for training and testing the proposed model on the different sleep stages. These databases are University College Dublin database (UCD), Beth Israel Deaconess Medical Center MIT database (MIT-BIH), Sleep European Data Format (EDF), Sleep EDF Extended, Montreal Archive of Sleep Studies (MASS), and Sleep Heart Health Study (SHHS). Our results show that the gradient saturation problem does not exist anymore. The modified Adam optimiser helps to reduce the noise which in turn result in faster convergence time. Conclusion: The convergence speed of ESSC is increased along with better classification accuracy compared to the state of art solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源