论文标题

列列板的非线性弯曲理论

A nonlinear bending theory for nematic LCE plates

论文作者

Bartels, Sören, Griehl, Max, Neukamm, Stefan, Padilla-Garza, David, Palus, Christian

论文摘要

在本文中,我们研究了由顶层中的列液晶弹性体组成的弹性双层板,底层中的非线性弹性材料。虽然假定底层在平面参考配置中是不应力的,但顶层具有依赖于局部液晶方向的本征膜。结果,板显示出非平衡的非平板变形,几何形状非平衡地取决于板的相对厚度和形状,材料参数,变形的边界条件以及液晶取向的锚固。我们专注于弯曲状态中的薄板,并得出了二维弯曲模型,该模型将变形的非线性弯曲能与导演场的表面oseen-frank能量结合在一起,描述了描述液晶弹性体局部方向的导演场。两种能量都是通过自发曲率术语有效地描述列马弹性耦合的自发曲率项。我们严格地从三维非线性弹性中得出该模型作为γ限度。我们还设计了一种新的数值算法来计算二维模型的固定点。我们进行数值实验并提出模拟结果,以说明所提出的方案的实际特性以及系统的丰富机械行为。

In this paper, we study an elastic bilayer plate composed of a nematic liquid crystal elastomer in the top layer and a nonlinearly elastic material in the bottom layer. While the bottom layer is assumed to be stress-free in the flat reference configuration, the top layer features an eigenstrain that depends on the local liquid crystal orientation. As a consequence, the plate shows non-flat deformations in equilibrium with a geometry that non-trivially depends on the relative thickness and shape of the plate, material parameters, boundary conditions for the deformation, and anchorings of the liquid crystal orientation. We focus on thin plates in the bending regime and derive a two-dimensional bending model that combines a nonlinear bending energy for the deformation, with a surface Oseen-Frank energy for the director field that describes the local orientation of the liquid crystal elastomer. Both energies are nonlinearly coupled by means of a spontaneous curvature term that effectively describes the nematic-elastic coupling. We rigorously derive this model as a Γ-limit from three-dimensional, nonlinear elasticity. We also devise a new numerical algorithm to compute stationary points of the two-dimensional model. We conduct numerical experiments and present simulation results that illustrate the practical properties of the proposed scheme as well as the rich mechanical behavior of the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源