论文标题
用于熔融盐蒸气液平衡预测及其应用于NaCl的原子模拟框架
Atomistic Simulation Framework for Molten Salt Vapor-Liquid Equilibrium Prediction and its Application to NaCl
论文作者
论文摘要
熔融盐的蒸气液平衡(VLE)特性的知识在用于太阳能和核能生产应用的热量储能系统中很重要。涉及的高温使其实验性确定有问题,并且宏观热力学相关性和基于预测的基于分子的方法的发展变得复杂,要求适当地纳入化学反应的蒸汽相种。我们为熔融盐VLE预测提供了一个一般基于热力学的原子模拟框架,并显示了其在NaCl中的应用。它的输入量是蒸气相反应的温度依赖性理想气体自由能数据,以及液体的密度和残余化学势数据。如果它们在实验上不可用,则可以使用标准电子结构软件进行预测,而后者可以通过经典的原子模拟方法进行预测。该框架可以预测蒸气压,共存相密度,蒸气相成分和蒸发焓的温度依赖性。它还可以预测存在少量量(例如自由离子)的蒸气期物种的浓度,这些数量极难在实验中测量。此外,我们还使用VLE结果来获得与完整的VLE二线圆顶和临界特性的近似值。我们验证了熔融NaCl的框架,在文献中可以为基于实验的密度和化学潜力数据提供。然后,我们将其应用于两个常用原子力场的NaCl模拟数据的分析。该框架可以很容易地扩展到熔融盐混合物和离子液体。
Knowledge of the vapor-liquid equilibrium (VLE) properties of molten salts is important in the design of thermal energy storage systems for solar power and nuclear energy production applications. The high temperatures involved make their experimental determination problematic, and the development of both macroscopic thermodynamic correlations and predictive molecular-based methodologies are complicated by the requirement to appropriately incorporate the chemically reacting vapor-phase species. We derive a general thermodynamic-based atomistic simulation framework for molten salt VLE prediction and show its application to NaCl. Its input quantities are temperature-dependent ideal-gas free energy data for the vapor phase reactions, and density and residual chemical potential data for the liquid. If these are not available experimentally, the former may be predicted using standard electronic structure software, and the latter by means of classical atomistic simulation methodology. The framework predicts the temperature dependence of vapor pressure, coexisting phase densities, vapor phase composition, and vaporization enthalpy. It also predicts the concentrations of vapor phase species present in minor amounts (such as the free ions), quantities that are extremely difficult to measure experimentally. We furthermore use the VLE results to obtain approximations to the complete VLE binodal dome and the critical properties. We verify the framework for molten NaCl, for which experimentally based density and chemical potential data are available in the literature. We then apply it to the analysis of NaCl simulation data for two commonly used atomistic force fields. The framework can be readily extended to molten salt mixtures and to ionic liquids.