论文标题
在毛勒 - 卡丹空间的同置固定点上,有有限的小组动作
On the homotopy fixed points of Maurer-Cartan spaces with finite group actions
论文作者
论文摘要
我们开发了与(移动完整的)$ l_ \ infty $代数相关的Maurer-Cartan简单集的基本理论。我们的主要结果断言,如果$ l_ \ infty $代数集中在非阴性度中,则将这个模棱两可的简单设置的固定点纳入同型固定点是KAN复合物的同倍等效。作为应用程序,在某些连接性假设下,我们提供了配备有限组作用的固定固定点和同型固定点的合理代数模型。
We develop the basic theory of Maurer-Cartan simplicial sets associated to (shifted complete) $L_\infty$ algebras equipped with the action of a finite group. Our main result asserts that the inclusion of the fixed points of this equivariant simplicial set into the homotopy fixed points is a homotopy equivalence of Kan complexes, provided the $L_\infty$ algebra is concentrated in non-negative degrees. As an application, and under certain connectivity assumptions, we provide rational algebraic models of the fixed and homotopy fixed points of mapping spaces equipped with the action of a finite group.