论文标题
$ 2D $ SIGMA型号和几何形状
$2d$ Sigma Models and Geometry
论文作者
论文摘要
超对称非线性Sigma模型具有带有有趣几何形状的目标空间。模型具有的超对称性越多,几何形状越丰富。对具有二维世界表的模型的研究特别有意义,因为它们允许扭转几何形状。在这篇评论中,我描述并说明了$ 2D $ supersymmetry与Riemannian,Complex,Bihermitian,$(P,Q)$ Hermitean,Kähler,Hyperkähler,广义几何等的关系
Supersymmetric nonlinear sigma models have target spaces that carry interesting geometry. The geometry is richer the more supersymmetries the model has. The study of models with two dimensional world sheets is particularly rewarding since they allow for torsionful geometries. In this review I describe and exemplify the relation of $2d$ supersymmetry to Riemannian, complex, bihermitian, $(p,q)$ Hermitean, Kähler, hyperkähler, generalised geometry and more