论文标题

机器学习启用了用于设计新稀土化合物的热力学模型

Machine-learning enabled thermodynamic model for the design of new rare-earth compounds

论文作者

Singh, Prashant, Del Rose, Tyler, Vazquez, Guillermo, Arroyave, Raymundo, Mudryk, Yaroslav

论文摘要

我们采用基于描述符的机器学习方法来评估化学合金对稀土金属层层的形成触觉的影响。由于可靠数据集的可用性有限,因此在稀有金属间设计中应用机器学习方法的应用很少。在这项工作中,我们开发了一个具有超过600 $+$化合物的“内部”稀土数据库,每个条目都使用高通量密度功能官能理论(DFT)填充了地层焓和相关的原子特征。基于有意义的原子特征的基于有意义的原子能的基于机器学习方法(确定的独立性筛选和稀疏操作员)用于训练和测试稀土化合物的形成焓。结合机器学习模型的复杂晶格函数用于探索过渡金属合金对基于CE基于CE的立方Laves阶段的能量稳定性的影响(MGCU $ _ {2} $ type)。 SISSO预测与高保真DFT计算和X $ - $射线粉末衍射测量结果非常吻合。我们的研究为机器学习模型中的组成考虑提供了定量指导,并发现了新的亚稳态材料。还以$ - $深度分析了CE $ -Fe $ -Fe $ - $ -CU的电子结构,以了解相位稳定性的电子起源。可解释的分析模型与密度$ - $功能理论和实验相结合,为发现技术有用的材料提供了快速可靠的设计指南。

We employ a descriptor based machine-learning approach to assess the effect of chemical alloying on formation-enthalpy of rare-earth intermetallics. Application of machine-learning approaches in rare-earth intermetallic design have been sparse due to limited availability of reliable datasets. In this work, we developed an `in-house' rare-earth database with more than 600$+$ compounds, each entry was populated with formation enthalpy and related atomic features using high-throughput density-functional theory (DFT). The SISSO (sure independence screening and sparsifying operator) based machine-learning method with meaningful atomic features was used for training and testing the formation enthalpies of rare earth compounds. The complex lattice function coupled with the machine-learning model was used to explore the effect of transition metal alloying on the energy stability of Ce based cubic Laves phases (MgCu$_{2}$ type). The SISSO predictions show good agreement with high-fidelity DFT calculations and X$-$ray powder diffraction measurements. Our study provides quantitative guidance for compositional considerations within a machine-learning model and discovering new metastable materials. The electronic-structure of Ce$-$Fe$-$Cu based compound was also analyzed in$-$depth to understand the electronic origin of phase stability. The interpretable analytical models in combination with density$-$functional theory and experiments provide a fast and reliable design guide for discovering technologically useful materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源