论文标题

菱形堆积的MOS $ _2 $中的自发极化引起的光伏效应

Spontaneous Polarization Induced Photovoltaic Effect In Rhombohedrally Stacked MoS$_2$

论文作者

Yang, Dongyang, Wu, Jingda, Zhou, Benjamin T., Liang, Jing, Ideue, Toshiya, Siu, Teri, Awan, Kashif Masud, Watanabe, Kenji, Taniguchi, Takashi, Iwasa, Yoshihiro, Franz, Marcel, Ye, Ziliang

论文摘要

范德华材料中的堆叠顺序确定原子层之间的耦合,因此是材料特性的关键。通过探索不同的堆叠顺序,在人造VDW堆栈中已经实现了许多新型的物理现象。最近,在零度排列的HBN和石墨烯-HBN异质结构中观察到了2D铁电性,在一系列电子应用中保持了希望。但是,在那些人造堆栈中,单个域的大小受堆叠角度的未对准的限制,约为0.1至1 $μ$ m,这与大多数光学或光电的应用不相容。在这里,我们显示菱形阶段中的MOS $ _2 $可以在几个$ $ $ m $ m尺寸的去角质薄片中托管均质的自发极化,因为它是一种天然晶体,不需要堆叠,因此没有损坏。利用这种均匀的极化及其诱导的去极化场(DEP),我们构建了一个基于高效率的基于$ _2 $的光伏设备。几层MOS $ _2 $比大多数基于氧化物的铁电膜更薄,这使我们能够最大化DEP并在原子上较薄的极限下研究其影响,而在高度均匀的晶体中可以实现高度均匀的极化,从而实现了一个有形的路径。我们设备的外部量子效率在室温下高达16%,超过一个大于大量光伏设备中观察到的最高效率,这是由于石墨烯中的筛选减少,激发子增强的光 - 互动,以及MOS $ _2 $中的超快夹层相互作用。鉴于其他TMD中的带隙能量范围广泛,我们的发现使菱形TMD成为用于应用诸如具有高速和可编程极性的能源效率的光检测等应用的有前途且多才多艺的候选者。

Stacking order in van der Waals materials determines the coupling between atomic layers and is therefore key to the materials' properties. By exploring different stacking orders, many novel physical phenomena have been realized in artificial vdW stacks. Recently, 2D ferroelectricity has been observed in zero-degree aligned hBN and graphene-hBN heterostructures, holding promise in a range of electronic applications. In those artificial stacks, however, the single domain size is limited by the stacking-angle misalignment to about 0.1 to 1 $μ$m, which is incompatible with most optical or optoelectronic applications. Here we show MoS$_2$ in the rhombohedral phase can host a homogeneous spontaneous polarization throughout few-$μ$m-sized exfoliated flakes, as it is a natural crystal requiring no stacking and is, therefore free of misalignment. Utilizing this homogeneous polarization and its induced depolarization field (DEP), we build a graphene-MoS$_2$ based photovoltaic device with high efficiency. The few-layer MoS$_2$ is thinner than most oxide-based ferroelectric films, which allows us to maximize the DEP and study its impact at the atomically thin limit, while the highly uniform polarization achievable in the commensurate crystal enables a tangible path for up-scaling. The external quantum efficiency of our device is up to 16% at room temperature, over one order larger than the highest efficiency observed in bulk photovoltaic devices, owing to the reduced screening in graphene, the exciton-enhanced light-matter interaction, and the ultrafast interlayer relaxation in MoS$_2$. In view of the wide range of bandgap energy in other TMDs, our findings make rhombohedral TMDs a promising and versatile candidate for applications such as energy-efficient photo-detection with high speed and programmable polarity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源