论文标题

部分可观测时空混沌系统的无模型预测

Jupiter's inhomogeneous envelope

论文作者

Miguel, Y., Bazot, M., Guillot, T., Howard, S., Galanti, E., Kaspi, Y., Hubbard, W. B., Militzer, B., Helled, R., Atreya, S. K., Connerney, J. E. P., Durante, D., Kulowski, L., Lunine, J. I., Stevenson, D., Bolton, S.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

While Jupiter's massive gas envelope consists mainly of hydrogen and helium, the key to understanding Jupiter's formation and evolution lies in the distribution of the remaining (heavy) elements. Before the Juno mission, the lack of high-precision gravity harmonics precluded the use of statistical analyses in a robust determination of the heavy-elements distribution in Jupiter's envelope. In this paper, we assemble the most comprehensive and diverse collection of Jupiter interior models to date and use it to study the distribution of heavy elements in the planet's envelope. We apply a Bayesian statistical approach to our interior model calculations, reproducing the Juno gravitational and atmospheric measurements and constraints from the deep zonal flows. Our results show that the gravity constraints lead to a deep entropy of Jupiter corresponding to a 1 bar temperature 5-15 K higher than traditionally assumed. We also find that uncertainties in the equation of state are crucial when determining the amount of heavy elements in Jupiter's interior. Our models put an upper limit to the inner compact core of Jupiter of 7 Earth masses, independently on the structure model (with or without dilute core) and the equation of state considered. Furthermore, we robustly demonstrate that Jupiter's envelope is inhomogenous, with a heavy-element enrichment in the interior relative to the outer envelope. This implies that heavy element enrichment continued through the gas accretion phase, with important implications for the formation of giant planets in our solar system and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源