论文标题

部分可观测时空混沌系统的无模型预测

Joint Probability Estimation Using Tensor Decomposition and Dictionaries

论文作者

Haque, Shaan ul, Rajwade, Ajit, Gurumoorthy, Karthik S.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this work, we study non-parametric estimation of joint probabilities of a given set of discrete and continuous random variables from their (empirically estimated) 2D marginals, under the assumption that the joint probability could be decomposed and approximated by a mixture of product densities/mass functions. The problem of estimating the joint probability density function (PDF) using semi-parametric techniques such as Gaussian Mixture Models (GMMs) is widely studied. However such techniques yield poor results when the underlying densities are mixtures of various other families of distributions such as Laplacian or generalized Gaussian, uniform, Cauchy, etc. Further, GMMs are not the best choice to estimate joint distributions which are hybrid in nature, i.e., some random variables are discrete while others are continuous. We present a novel approach for estimating the PDF using ideas from dictionary representations in signal processing coupled with low rank tensor decompositions. To the best our knowledge, this is the first work on estimating joint PDFs employing dictionaries alongside tensor decompositions. We create a dictionary of various families of distributions by inspecting the data, and use it to approximate each decomposed factor of the product in the mixture. Our approach can naturally handle hybrid $N$-dimensional distributions. We test our approach on a variety of synthetic and real datasets to demonstrate its effectiveness in terms of better classification rates and lower error rates, when compared to state of the art estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源