论文标题
基于物理数据驱动的机器学习模型:IPMC软人造肌肉的非线性,动态和开环识别的混合方式
Physics-Data Driven Machine Learning Based Model: A Hybrid Way for Nonlinear, Dynamic, and Open-loop Identification of IPMC Soft Artificial Muscles
论文作者
论文摘要
离子聚合物金属复合材料(IPMC)是用于工业和生物医学应用的生物相容性材料中最优选的选择之一。尽管有优势,但它们的一些缺点包括非线性和滞后行为,这使建模过程变得复杂。在以前的工作中,通常使用自回旋模型来预测IPMC执行器的行为。使用自回归模型的主要缺点是它不能用于移动和实时应用程序中。在这项研究中,我们为IPMC执行器提出了一个混合分析智能模型。该模型最出色的特征是其非解放性结构。本研究中提出的混合概念可以推广到IPMC以外的各种问题。这项工作中使用的结构包括一个分析模型和深层神经网络,为IPMC执行器提供了非线性,动态性和非自动回调模型。最后,与其他非自动进取结构相比,使用所提出的混合模型实现的平均NMSE为9.5781E-04,显示错误率显着下降。
Ionic Polymer Metal Composites (IPMCs) are one of the most preferred choices among biocompatible materials for industrial and biomedical applications. Despite their advantages, some of their drawbacks include non-linear and hysteretic behavior, which complicates the modeling process. In previous works, usually autoregressive models were used to predict the behavior of an IPMC actuator. The main drawback of using an autoregressive model is that it cannot be used in mobile and real-time applications. In this study, we proposed a hybrid analytical intelligent model for an IPMC actuator. The most outstanding feature of this model is its non-autoregressive structure. The hybrid concept proposed in this study can be generalized to various problems other than IPMCs. The structure used in this work comprises an analytical model and a deep neural network, providing a non-linear, dynamic, and non-autoregressive model for the IPMC actuator. Lastly, the average NMSE achieved using the proposed hybrid model is 9.5781e-04 showing a significant drop in the error rate compared to other non-autoregressive structures.