论文标题

3D人类运动预测:调查

3D Human Motion Prediction: A Survey

论文作者

Lyu, Kedi, Chen, Haipeng, Liu, Zhenguang, Zhang, Beiqi, Wang, Ruili

论文摘要

3D人类运动预测,预测给定序列的未来姿势,是计算机视觉和机器智能中具有重要意义和挑战的问题,可以帮助机器理解人类行为。由于对深度神经网络(DNN)的发展和理解不断增长以及大规模人类运动数据集的可用性,随着学术界和工业界的兴趣激增,人类的运动预测已得到了极大的提高。在这种情况下,为了回顾和分析现有释放文献的相关作品的目的,对3D人类运动预测进行了全面调查。此外,建立了相关的分类法,以将这些现有方法分类为3D人类运动预测。在本调查中,相关方法分为三类:人姿势表示,网络结构设计和\ textit {预测目标}。我们系统地回顾了自2015年以来人类运动预测领域的所有相关期刊和会议论文,根据本调查中的拟议分类,详细介绍了这些期刊和会议论文。此外,本文分别介绍了公共基准数据集,评估标准和性能比较的轮廓。还讨论了最新方法的局限性,希望为将来的探索铺平道路。

3D human motion prediction, predicting future poses from a given sequence, is an issue of great significance and challenge in computer vision and machine intelligence, which can help machines in understanding human behaviors. Due to the increasing development and understanding of Deep Neural Networks (DNNs) and the availability of large-scale human motion datasets, the human motion prediction has been remarkably advanced with a surge of interest among academia and industrial community. In this context, a comprehensive survey on 3D human motion prediction is conducted for the purpose of retrospecting and analyzing relevant works from existing released literature. In addition, a pertinent taxonomy is constructed to categorize these existing approaches for 3D human motion prediction. In this survey, relevant methods are categorized into three categories: human pose representation, network structure design, and \textit{prediction target}. We systematically review all relevant journal and conference papers in the field of human motion prediction since 2015, which are presented in detail based on proposed categorizations in this survey. Furthermore, the outline for the public benchmark datasets, evaluation criteria, and performance comparisons are respectively presented in this paper. The limitations of the state-of-the-art methods are discussed as well, hoping for paving the way for future explorations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源