论文标题

自适应重建的实验,以进行森林快速自动飞行

Experiments in Adaptive Replanning for Fast Autonomous Flight in Forests

论文作者

Jarin-Lipschitz, Laura, Liu, Xu, Tao, Yuezhan, Kumar, Vijay

论文摘要

在森林等非结构化,混乱的环境中,快速,自主飞行具有挑战性,因为它要求机器人在计算约束的平台上实时计算新计划。在本文中,我们可以通过基于搜索的计划框架实现此功能,该框架可以实时调整采样密度,以找到动态可行的计划,同时保持计算上的处理。基于搜索的计划中的最重要挑战是,密集的障碍都需要大图(以确保完整性)并降低图形搜索的效率(因为启发式方法变得越来越准确)。为了解决这个问题,我们开发了一个具有两个部分的计划框架:一个部分可最大程度地提高给定图形大小的计划者的完整性,而第二个则动态最大化图形大小受到计算约束。该框架是由由单个参数(分散)定义的运动计划图来启用的,该分散量量化了从图形中达到任意状态的最大轨迹成本。我们通过真实和模拟的实验来显示如何实时将色散适应不同的环境,从而在密度不同的环境中操作。模拟实验表明,基于基线搜索的计划算法的性能提高了。我们还展示了在现实世界中混乱的松树林中的飞行速度高达25m/s。

Fast, autonomous flight in unstructured, cluttered environments such as forests is challenging because it requires the robot to compute new plans in realtime on a computationally-constrained platform. In this paper, we enable this capability with a search-based planning framework that adapts sampling density in realtime to find dynamically-feasible plans while remaining computationally tractable. A paramount challenge in search-based planning is that dense obstacles both necessitate large graphs (to guarantee completeness) and reduce the efficiency of graph search (as heuristics become less accurate). To address this, we develop a planning framework with two parts: one that maximizes planner completeness for a given graph size, and a second that dynamically maximizes graph size subject to computational constraints. This framework is enabled by motion planning graphs that are defined by a single parameter, dispersion, which quantifies the maximum trajectory cost to reach an arbitrary state from the graph. We show through real and simulated experiments how the dispersion can be adapted to different environments in realtime, allowing operation in environments with varying density. The simulated experiment demonstrates improved performance over a baseline search-based planning algorithm. We also demonstrate flight speeds of up to 2.5m/s in real-world cluttered pine forests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源