论文标题
电子 - 音波模型的快速且可扩展的量子蒙特卡洛模拟
Fast and scalable quantum Monte Carlo simulations of electron-phonon models
论文作者
论文摘要
我们介绍了电子模型高度可扩展的量子蒙特卡洛模拟方法,并在方形晶格上报告了荷斯坦模型的基准结果。确定性量子蒙特卡洛(DQMC)方法是一种广泛使用的工具,用于在有限温度下模拟简单的电子 - 音波模型,但会产生与系统大小相比缩放的计算成本。或者,可以使用混合蒙特卡洛(HMC)方法和费米昂决定因素的积分表示,可以实现具有系统尺寸的近线性缩放。在这里,我们介绍了一系列方法,这些方法可以使这种模拟更快。为了抗击玻感动作引起的“刚度”,我们回顾了如何将傅立叶加速度与时步分裂结合在一起。为了克服与强束的双极形成相关的声子采样屏障,我们设计了大约尊重粒子孔对称性的全局蒙特卡洛更新。为了加速迭代线性求解器,我们引入了一个预处理,该预处理在无限原子质量的绝热极限中变得精确。最后,我们证明了如何使用快速傅立叶变换可以加速随机测量。这些方法都是互补的,并且可以根据模型详细信息产生多个数量级的加速。
We introduce methodologies for highly scalable quantum Monte Carlo simulations of electron-phonon models, and report benchmark results for the Holstein model on the square lattice. The determinant quantum Monte Carlo (DQMC) method is a widely used tool for simulating simple electron-phonon models at finite temperatures, but incurs a computational cost that scales cubically with system size. Alternatively, near-linear scaling with system size can be achieved with the hybrid Monte Carlo (HMC) method and an integral representation of the Fermion determinant. Here, we introduce a collection of methodologies that make such simulations even faster. To combat "stiffness" arising from the bosonic action, we review how Fourier acceleration can be combined with time-step splitting. To overcome phonon sampling barriers associated with strongly-bound bipolaron formation, we design global Monte Carlo updates that approximately respect particle-hole symmetry. To accelerate the iterative linear solver, we introduce a preconditioner that becomes exact in the adiabatic limit of infinite atomic mass. Finally, we demonstrate how stochastic measurements can be accelerated using fast Fourier transforms. These methods are all complementary and, combined, may produce multiple orders of magnitude speedup, depending on model details.