论文标题

改善深网的概括以估计容器和填充物的物理特性

Improving Generalization of Deep Networks for Estimating Physical Properties of Containers and Fillings

论文作者

Wang, Hengyi, Zhu, Chaoran, Ma, Ziyin, Oh, Changjae

论文摘要

我们提出了估计家庭容器及其填充物的物理特性的方法。我们使用轻巧的,预先训练的卷积神经网络,并将注意力作为管道的骨干模型,以准确定位感兴趣的对象并估算Corsmal容器操纵(CCM)数据集中的物理性质。我们使用音频数据来解决填充类型分类,然后将这些信息与视频模式相结合,以解决填充级别的分类。对于集装箱容量,维度和质量估计,我们提出了一个数据增强和一致性测量,以减轻由容器数量有限引起的CCM数据集中的过度拟合问题。我们使用基于利益对象的重新缩放来增加培训数据,从而增加容器的物理价值。然后,我们执行一致性测量,以选择一个在不同场景下相同容器中具有较低预测差异的模型,从而确保模型的概括能力。我们的方法提高了模型估计培训中没有看到的容器的性质的概括能力。

We present methods to estimate the physical properties of household containers and their fillings manipulated by humans. We use a lightweight, pre-trained convolutional neural network with coordinate attention as a backbone model of the pipelines to accurately locate the object of interest and estimate the physical properties in the CORSMAL Containers Manipulation (CCM) dataset. We address the filling type classification with audio data and then combine this information from audio with video modalities to address the filling level classification. For the container capacity, dimension, and mass estimation, we present a data augmentation and consistency measurement to alleviate the over-fitting issue in the CCM dataset caused by the limited number of containers. We augment the training data using an object-of-interest-based re-scaling that increases the variety of physical values of the containers. We then perform the consistency measurement to choose a model with low prediction variance in the same containers under different scenes, which ensures the generalization ability of the model. Our method improves the generalization ability of the models to estimate the property of the containers that were not previously seen in the training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源