论文标题
跨不同逻辑的形式的论文
Essay on modality across different logics
论文作者
论文摘要
在本文中,我们处理将在不同逻辑系统中运行的模态世界的问题。在评估模态句子$ \boxφ$时,我们认为在访问世界中(可能在不同的逻辑中)检查$φ$的真相是不够的。取而代之的是,必须在逻辑系统之间传输更多微妙的语义信息的方式。因此,我们将通过修复不同逻辑构建其语义的通用晶格$ l $来介绍模态结构,以适应逻辑系统之间的通信。在模态结构中考虑的每种逻辑的语义是$ l $的sublattice。在该系统中,声明的必要性和可能性不应仅依赖于每个世界的满意关系以及可访问性关系。公式$ \boxφ$的值将根据可访问世界中的$φ$的值与公共晶格$ l $之间的比较来定义。我们将调查公式$φ$的自然实例,即使所有可访问的世界伪造$φ$,也可能是必要的$/$。最后,我们将讨论表征逻辑系统之间动态关系的框架:经典增加,经典减少和辩证框架。
In this paper, we deal with the problem of putting together modal worlds that operate in different logic systems. When evaluating a modal sentence $\Box φ$, we argue that it is not sufficient to inspect the truth of $φ$ in accessed worlds (possibly in different logics). Instead, ways of transferring more subtle semantic information between logical systems must be established. Thus, we will introduce modal structures that accommodate communication between logic systems by fixing a common lattice $L$ where different logics build their semantics. The semantics of each logic being considered in the modal structure is a sublattice of $L$. In this system, necessity and possibility of a statement should not solely rely on the satisfaction relation in each world and the accessibility relation. The value of a formula $\Box φ$ will be defined in terms of a comparison between the values of $φ$ in accessible worlds and the common lattice $L$. We will investigate natural instances where formulas $φ$ can be said to be necessary$/$possible even though all accessible world falsify $φ$. Finally, we will discuss frames that characterize dynamic relations between logic systems: classically increasing, classically decreasing and dialectic frames.