论文标题
PASCA:可扩展范式下的图形神经架构搜索系统
PaSca: a Graph Neural Architecture Search System under the Scalable Paradigm
论文作者
论文摘要
图形神经网络(GNN)已在各种基于图的任务中实现了最先进的性能。但是,由于主流GNN是根据神经消息传递机制设计的,因此它们不能很好地扩展到数据大小和消息传递步骤。尽管对可扩展GNN的设计引起了人们的兴趣,但当前的研究集中于特定的GNN设计,而不是一般的设计空间,从而限制了潜在的可扩展GNN模型的发现。本文提出了PASCA,这是一种新的范式和系统,它提供了一种有原则的方法来系统地构建和探索可扩展GNN的设计空间,而不是研究单个设计。通过解构消息传递机制,PASCA提出了一种新颖的可扩展图神经体系结构范式(SGAP),以及一个由150K不同设计组成的通用建筑设计空间。遵循范式之后,我们实施了一个自动搜索引擎,该引擎可以自动搜索良好的且可扩展的GNN体系结构,以平衡多个标准(例如准确性和效率)之间通过多目标优化之间的权衡。对十个基准数据集的实证研究表明,我们系统发现的代表性实例(即PASCA-V1,V2和V3)在竞争基准中实现了一致的性能。具体而言,PASCA-V3在我们的大型行业数据集上的预测准确性方面优于最先进的GNN方法JK-NET,而达到$ 28.3 \ times $ times $ thimes的培训速度。
Graph neural networks (GNNs) have achieved state-of-the-art performance in various graph-based tasks. However, as mainstream GNNs are designed based on the neural message passing mechanism, they do not scale well to data size and message passing steps. Although there has been an emerging interest in the design of scalable GNNs, current researches focus on specific GNN design, rather than the general design space, limiting the discovery of potential scalable GNN models. This paper proposes PasCa, a new paradigm and system that offers a principled approach to systemically construct and explore the design space for scalable GNNs, rather than studying individual designs. Through deconstructing the message passing mechanism, PasCa presents a novel Scalable Graph Neural Architecture Paradigm (SGAP), together with a general architecture design space consisting of 150k different designs. Following the paradigm, we implement an auto-search engine that can automatically search well-performing and scalable GNN architectures to balance the trade-off between multiple criteria (e.g., accuracy and efficiency) via multi-objective optimization. Empirical studies on ten benchmark datasets demonstrate that the representative instances (i.e., PasCa-V1, V2, and V3) discovered by our system achieve consistent performance among competitive baselines. Concretely, PasCa-V3 outperforms the state-of-the-art GNN method JK-Net by 0.4\% in terms of predictive accuracy on our large industry dataset while achieving up to $28.3\times$ training speedups.