论文标题

在存在随机重置的情况下,库拉莫托模型的同步

Synchronization in the Kuramoto model in presence of stochastic resetting

论文作者

Sarkar, Mrinal, Gupta, Shamik

论文摘要

当涉及分布式固有频率相互作用的振荡器并显示固定状态下自发的集体同步的范式库拉莫托模型会遭受其动力学的随机和重复中断,并重复将其重置为初始条件,会发生什么?在重置为同步状态时,可能会发生在系统脱离的两个连续重置之间,这取决于两个重置之间的随机时间间隔的持续时间。在这里,我们揭示了这种随机重置的协议如何显着修改裸机模型的相位图,尤其允许出现同步阶段,即使是在裸机模型不支持这种相位的参数方面中也允许出现。我们的结果基于确切的分析,援引著名的Ott-Antonsen Ansatz,以实现Lorentzian固有频率分布的情况,以及高斯频率分布的数值结果。我们的工作提供了一个简单的协议,可以通过随机重置在系统中诱导全局同步。

What happens when the paradigmatic Kuramoto model involving interacting oscillators of distributed natural frequencies and showing spontaneous collective synchronization in the stationary state is subject to random and repeated interruptions of its dynamics with a reset to the initial condition? While resetting to a synchronized state, it may happen between two successive resets that the system desynchronizes, which depends on the duration of the random time interval between the two resets. Here, we unveil how such a protocol of stochastic resetting dramatically modifies the phase diagram of the bare model, allowing in particular for the emergence of a synchronized phase even in parameter regimes for which the bare model does not support such a phase. Our results are based on an exact analysis invoking the celebrated Ott-Antonsen ansatz for the case of Lorentzian distribution of natural frequencies, and numerical results for Gaussian frequency distribution. Our work provides a simple protocol to induce global synchrony in the system through stochastic resetting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源