论文标题
吸收T托里星星的磁制动II:跨度和旋转状态的扭矩配方
Magnetic Braking of Accreting T Tauri Stars II: Torque Formulation Spanning Spin-Up and Spin-Down Regimes
论文作者
论文摘要
经典的T托里恒星及其周围的积聚磁盘之间的磁相互作用被认为会影响其旋转进化。我们使用2.5D磁水动力学,通过冥王星代码计算的星盘相互作用的轴对称模拟来计算作用在这些恒星上的净扭矩。我们将净扭矩分为三个贡献:积聚(旋转),恒星风(旋转)和磁层弹出(MES)(MES)(旋转或向下)。在论文I中,我们探索了相互作用方案,其中恒星磁层在位置旋转速度的内部磁盘比恒星更快,从而产生了强大的净旋转贡献,其净旋转贡献(“稳定积聚”制度)。在本文中,我们研究了截短半径越来越接近甚至超过旋律的相互作用状态,在这种情况下,磁盘材料有可能获得角动量并被离心屏障(“螺旋桨”制度)定期弹出。这会减少积聚扭矩,可以更改ME扭矩的符号,并可能导致净出色的旋转配置。这些结果表明,即使在旋转半径内的截断半径($ r_ \ text {t} \ gtrsim 0.7 r_ \ text {co} $)中,也可以具有净旋转恒星扭矩。我们适合截断半径的半分析函数,以及与星盘相互作用(即吸积和我的扭矩之和)和恒星风相关的扭矩,从而可以预测净出现的净扭矩,以覆盖净旋转和旋转配置的参数状态,并可以通过调查旋转的旋转效果,并覆盖旋转旋转的可能性。
The magnetic interaction between a classical T Tauri star and its surrounding accretion disk is thought to influence its rotational evolution. We use 2.5D magnetohydrodynamic, axisymmetric simulations of star-disk interaction, computed via the PLUTO code, to calculate the net torque acting on these stars. We divide the net torque into three contributions: accretion (spin-up), stellar winds (spin-down), and magnetospheric ejections (MEs) (spin-up or down). In Paper I, we explored interaction regimes in which the stellar magnetosphere truncates the inner disk at a location spinning faster than the star, resulting in a strong net spin-up contribution from accretion and MEs ("steady accretion" regime). In this paper, we investigate interaction regimes in which the truncation radius gets closer to and even exceeds corotation, where it is possible for the disk material to gain angular momentum and be periodically ejected by the centrifugal barrier ("propeller" regime). This reduces the accretion torque, can change the sign of the ME torque, and can result in a net stellar spin-down configuration. These results suggest it is possible to have a net spin-down stellar torque even for truncation radii within the corotation radius ($R_\text{t} \gtrsim 0.7 R_\text{co}$). We fit semi-analytic functions for the truncation radius, and the torque associated with star-disk interaction (i.e., the sum of accretion and ME torques) and stellar wind, allowing for the prediction of the net stellar torque for a parameter regime covering both net spin-up and spin-down configurations, as well as the possibility of investigating rotational evolution via 1D stellar evolution codes.