论文标题
无监督异常检测的全频渠道选择表示
Omni-frequency Channel-selection Representations for Unsupervised Anomaly Detection
论文作者
论文摘要
近年来,基于密度和基于分类的方法已排除了无监督的异常检测,而基于重建的方法对于不良的重建能力和较低的性能而言很少被提及。但是,后者不需要昂贵的额外培训样本来实用的无监督培训,因此本文着重于改进这种方法,并提出了一种新型的Omni频道渠道选择重建(OCR-GAN)网络,以从频率的角度来处理异常检测任务。具体而言,我们提出了一个频率解耦(FD)模块,以将输入图像解散为不同的频率组件,并将重建过程建模为平行的Omni频率图像修复体的组合,因为我们观察到正常和异常图像的频率分布有显着差异。鉴于多个频率之间的相关性,我们进一步提出了一个通道选择(CS)模块,该模块通过自适应选择不同的通道在不同编码器之间执行频率相互作用。大量的实验证明了我们方法比不同种类的方法的有效性和优势,例如,在MVTEC AD数据集上实现了新的最新最新检测AUC,而没有额外的培训数据,而没有明显超过+38.1的基于重构基线的额外训练数据,而当前的SOTA方法和+0.3。源代码可从https://github.com/zhangzjn/ocr-gan获得。
Density-based and classification-based methods have ruled unsupervised anomaly detection in recent years, while reconstruction-based methods are rarely mentioned for the poor reconstruction ability and low performance. However, the latter requires no costly extra training samples for the unsupervised training that is more practical, so this paper focuses on improving this kind of method and proposes a novel Omni-frequency Channel-selection Reconstruction (OCR-GAN) network to handle anomaly detection task in a perspective of frequency. Concretely, we propose a Frequency Decoupling (FD) module to decouple the input image into different frequency components and model the reconstruction process as a combination of parallel omni-frequency image restorations, as we observe a significant difference in the frequency distribution of normal and abnormal images. Given the correlation among multiple frequencies, we further propose a Channel Selection (CS) module that performs frequency interaction among different encoders by adaptively selecting different channels. Abundant experiments demonstrate the effectiveness and superiority of our approach over different kinds of methods, e.g., achieving a new state-of-the-art 98.3 detection AUC on the MVTec AD dataset without extra training data that markedly surpasses the reconstruction-based baseline by +38.1 and the current SOTA method by +0.3. Source code is available at https://github.com/zhangzjn/OCR-GAN.