论文标题

当传统过滤器符合深度学习时:图像过滤器上的基础组成学习

When A Conventional Filter Meets Deep Learning: Basis Composition Learning on Image Filters

论文作者

Wang, Fu Lee, Feng, Yidan, Xie, Haoran, Cheng, Gary, Wei, Mingqiang

论文摘要

图像过滤器是快速,轻巧且有效的,这使得这些传统的智慧可以作为视觉任务中的基本工具。在实际情况下,用户必须多次调整参数才能获得满意的结果。这种不便使效率和用户体验折价。我们建议对单个图像过滤器的基础组成学习,以自动确定其最佳公式。可行性基于两步策略:首先,我们构建一组过滤基础(FB),该基础由选定的参数配置下的近似值组成;其次,提出了一个双分支组成模块,以了解如何将FB中的候选物组合在一起以更好地近似目标图像。我们的方法在实践中很简单却有效。它使过滤器具有用户友好,并从基本的低级视力问题上受益,包括去牙,降低和纹理去除。广泛的实验表明,我们的方法在性能,时间复杂性和记忆效率之间达到了适当的平衡。

Image filters are fast, lightweight and effective, which make these conventional wisdoms preferable as basic tools in vision tasks. In practical scenarios, users have to tweak parameters multiple times to obtain satisfied results. This inconvenience heavily discounts the efficiency and user experience. We propose basis composition learning on single image filters to automatically determine their optimal formulas. The feasibility is based on a two-step strategy: first, we build a set of filtered basis (FB) consisting of approximations under selected parameter configurations; second, a dual-branch composition module is proposed to learn how the candidates in FB are combined to better approximate the target image. Our method is simple yet effective in practice; it renders filters to be user-friendly and benefits fundamental low-level vision problems including denoising, deraining and texture removal. Extensive experiments demonstrate that our method achieves an appropriate balance among the performance, time complexity and memory efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源