论文标题

运动预测中高清图的路径感知图

Path-Aware Graph Attention for HD Maps in Motion Prediction

论文作者

Da, Fang, Zhang, Yu

论文摘要

自动驾驶的运动预测的成功依赖于HD图的信息集成。由于地图是自然的图形结构,因此近年来,对编码HD图的图形神经网络(GNN)的研究正在迅速发展。但是,与许多其他应用程序直接部署的其他应用不同,高清图是各种性质的边缘(车道相互作用关系)连接的角色(车道)的异质图,并且大多数基于图的模型并未设计用于理解各种边缘类型的范围,以预测通行型环境的重要提示。为了克服这一挑战,我们提出了通心图的注意,这是一种新型的注意力结构,通过解析边缘的顺序形成连接它们的路径,从而渗透了两个顶点之间的注意力。我们的分析说明了提出的注意机制如何在现有的GCN斗争等现有图形网络的教学问题中促进学习。通过改进地图编码,提议的模型在Argoverse运动预测数据集上超过了先前的艺术状态,并赢得了2021年Agroverse运动预测竞赛的第一名。

The success of motion prediction for autonomous driving relies on integration of information from the HD maps. As maps are naturally graph-structured, investigation on graph neural networks (GNNs) for encoding HD maps is burgeoning in recent years. However, unlike many other applications where GNNs have been straightforwardly deployed, HD maps are heterogeneous graphs where vertices (lanes) are connected by edges (lane-lane interaction relationships) of various nature, and most graph-based models are not designed to understand the variety of edge types which provide crucial cues for predicting how the agents would travel the lanes. To overcome this challenge, we propose Path-Aware Graph Attention, a novel attention architecture that infers the attention between two vertices by parsing the sequence of edges forming the paths that connect them. Our analysis illustrates how the proposed attention mechanism can facilitate learning in a didactic problem where existing graph networks like GCN struggle. By improving map encoding, the proposed model surpasses previous state of the art on the Argoverse Motion Forecasting dataset, and won the first place in the 2021 Argoverse Motion Forecasting Competition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源