论文标题
部分可观测时空混沌系统的无模型预测
(Looking For) The Heart of Abelian Polish Groups
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We prove that the category $\mathcal{M}$ of abelian groups with a Polish cover introduced in collaboration with Bergfalk and Panagiotopoulos is the left heart of (the derived category of) the quasi-abelian category $\mathcal{A}$ of abelian Polish groups in the sense of Beilinson--Bernstein--Deligne and Schneiders. Thus, $\mathcal{M}$ is an abelian category containing $\mathcal{A}$ as a full subcategory such that the inclusion functor $\mathcal{A}\rightarrow \mathcal{M}$ is exact and finitely continuous. Furthermore, $\mathcal{M}$ is uniquely characterized up to equivalence by the following universal property: for every abelian category $\mathcal{B}$, a functor $\mathcal{A}\rightarrow \mathcal{B}$ is exact and finitely continuous if and only if it extends to an exact and finitely continuous functor $\mathcal{M}\rightarrow \mathcal{B}$. In particular, this provides a description of the left heart of $\mathcal{A}$ as a concrete category. We provide similar descriptions of the left heart of a number of categories of algebraic structures endowed with a topology, including: non-Archimedean abelian Polish groups; locally compact abelian Polish groups; totally disconnected locally compact abelian Polish groups; Polish $R$-modules, for a given Polish group or Polish ring $R$; and separable Banach spaces and separable Fréchet spaces over a separable complete non-Archimedean valued field.