论文标题

SC和Y功能化[1,1]的可逆氢存储能力[1,1]核酸烷:来自密度功能研究的见解

Reversible hydrogen storage capacity of Sc and Y functionalized [1,1]paracyclophane: Insights from density functional study

论文作者

Sahoo, Rakesh K., Kour, P., Sahu, Sridhar

论文摘要

这项工作报告了使用分散校正的密度功能理论计算的氢储存和SC和Y功能化[1,1]的递送能力。 SC和Y原子与[1,1] paracyclane的苯环强烈结合。每个SC和Y原子在[1,1]旁旋磷酸物种上通过kubas相互作用的高达6 H2分子功能化,分别达到最大的重量密度高达8.22 wt%和6.33 wt%。计算出的平均氢吸附能(0.36 eV)低于化学吸附,但高于物理吸附过程。动力学稳定性通过HOMO-LUMO间隙和不同的全局反应性描述符验证。 ADMP分子动力学模拟揭示了在室温高于室温和500 K处宿主材料的固体性时,吸附的H2分子的可逆性分别计算出SC和Y装饰系统的平均货物van't Hoff解吸温度为439 K和412 K,在1 atm的压力下为412 K。发现估计的热力学可用氢能力为5.92 wt%和5.87 wt%的氢,氢气满足了US-DOE的氢能标准(到2025年)。因此,我们认为SC和Y官能化[1,1]旁获得性可以视为在环境环境下的热力学可行性和潜在的可逆氢储存材料。

This work reports the hydrogen storage, and delivery capacities of Sc and Y functionalized [1,1]paracyclophane using dispersion corrected density functional theory calculations. The Sc and Y atoms are bind strongly with benzene rings of [1,1]paracyclophane. Each Sc and Y atom functionalized over [1,1]paracyclophane adsorb up to 6 H2 molecules via Kubas interaction achieving maximum gravimetric density up to 8.22 wt% and 6.33 wt%, respectively. The calculated average hydrogen adsorption energy (0.36 eV) is lower than the chemisorption but higher than the physisorption process. The kinetic stabilities are verified through the HOMO-LUMO gap and different global reactive descriptors. ADMP molecular dynamics simulations reveal the reversibility of adsorbed H2 molecules at sufficiently above the room temperature and the solidity of host material at 500 K. Average Van't Hoff desorption temperature for Sc and Y decorated system was calculated to be 439 K and 412 K respectively at 1 atm of pressure. The estimated thermodynamically usable hydrogen capacities are found to be 5.92 wt% and 5.87 wt% of hydrogen which fulfil the hydrogen energy criteria (by 2025) of US-DOE. Hence, we believe that Sc and Y functionalized [1,1]paracyclophane can be considered as a thermodynamically viable, and potential reversible hydrogen storage materials at ambient environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源