论文标题
均匀的单车超图的最大光谱半径,具有完美的匹配
The maximal spectral radius of the uniform unicyclic hypergraph with perfect matchings
论文作者
论文摘要
令$ \ Mathcal {u}(n,k)$和$γ(n,k)$为$ k $均匀的线性和非线性Unicyclic Hychorplaphs的集合,分别与$ n $ dertices,其中$ n \ geq k(k-1)$和$ k k \ geq 3 $。通过使用一些转换技术并为所考虑的超图构建发病率矩阵,我们在三种超图中获得了最大光谱半径的超图,即$ \ nathcal {u}(u}(n,k)$,$ n = 2k(k-1)$ n = 2k(k-1)$ n = 2k(k-1)$ n \ geq 9k(k-geq 9k $ nk $ n $ n $ n $ n, k(k-1)$和$ \ mathcal {u}(n,k)\cupγ(n,k)$,带有$ n \ geq 2k(k-1)$,其中$ k \ geq 3 $。
Let $\mathcal{U}(n,k)$ and $Γ(n,k)$ be the set of the $k$-uniform linear and nonlinear unicyclic hypergraphs having perfect matchings with $n$ vertices respectively, where $n\geq k(k-1)$ and $k\geq 3$. By using some techniques of transformations and constructing the incidence matrices for the hypergraphs considered, we get the hypergraphs with the maximal spectral radii among three kinds of hypergraphs, namely $\mathcal{U}(n,k)$ with $n= 2k(k-1)$ and $n\geq 9k(k-1)$, $Γ(n,k)$ with $n\geq k(k-1)$, and $\mathcal{U}(n,k)\cup Γ(n,k)$ with $n\geq 2k(k-1)$, where $k\geq 3$.