论文标题
Mullins-sekerka流的快速数值方法,并应用于接触角问题
A rapid numerical method for the Mullins-Sekerka flow with application to contact angle problems
论文作者
论文摘要
Mullins-Sekerka问题在$ \ Mathbb {r}^2 $借助Charge Migulation方法中以数值解决。这是Sakakibara和Yazaki计算Hele-Shaw流的数值方案的扩展。我们研究了搭配点数量的足够条件,以确保生成的近似多边形曲线的长度逐渐减小。我们为Mullins-Sekerka流提供了一个新的基准功能,以确认该方案效果很好。此外,通过更改电荷仿真方法的基本解决方案,我们成功建立了一个数值方案,该方案可用于治疗Mullins-Sekerka问题,并具有接触角条件。
The Mullins-Sekerka problem is numerically solved in $\mathbb{R}^2$ with the aid of the charge simulation method. This is an expansion of the numerical scheme by which Sakakibara and Yazaki computed the Hele-Shaw flow. We investigate a sufficient condition for the number of collocation points to ensure that the length of the generated approximate polygonal curves gradually decreases. We propose a new benchmark function for the Mullins-Sekerka flow to confirm that the scheme works well. Moreover, by changing the fundamental solutions of the charge simulation method, we are successful to establish a numerical scheme that can be used to treat the Mullins-Sekerka problem with the contact angle condition.