论文标题
对准分析的统计形式主义
A statistical formalism for alignment analysis
论文作者
论文摘要
在矢量场中给定方向的各向异性检测是天文学中的一个常见问题。已经提出了几种依赖数据和参考方向之间急性角度分布的方法。不同的方法使用蒙特卡洛方法来量化信号的统计意义,尽管通常缺乏分析框架。在这里,我们提出了两种检测和量化对准信号并测试其统计鲁棒性的方法。第一种方法考虑了平面垂直于参考方向相对于各向同性分布的矢量成分的相对分数的偏差。我们还得出了所得估计量的统计特性和稳定性,因此不依赖蒙特卡洛模拟来评估其统计意义。第二种方法是基于与经验累积分布函数的残差相对于均匀分布的预期的拟合,并使用一小部分的谐波正交函数不依赖于任何分配方案。我们将这些方法与文献中常用的其他方法(使用蒙特卡洛模拟)进行了比较,发现所提出的统计数据允许检测具有更大意义的比对信号。
The detection of anisotropies with respect to a given direction in a vector field is a common problem in astronomy. Several methods have been proposed that rely on the distribution of the acute angles between the data and a reference direction. Different approaches use Monte Carlo methods to quantify the statistical significance of a signal, although often lacking an analytical framework. Here we present two methods to detect and quantify alignment signals and test their statistical robustness. The first method considers the deviance of the relative fraction of vector components in the plane perpendicular to a reference direction with respect to an isotropic distribution. We also derive the statistical properties and stability of the resulting estimator, and therefore does not rely on Monte Carlo simulations to assess its statistical significance. The second method is based on a fit over the residuals of the empirical cumulative distribution function with respect to that expected for a uniform distribution, using a small set of harmonic orthogonal functions, which does not rely on any binning scheme. We compare these methods with others commonly used in the literature, using Monte Carlo simulations, finding that the proposed statistics allow the detection of alignment signals with greater significance.