论文标题

一项简要调查自适应视频流质量评估

A Brief Survey on Adaptive Video Streaming Quality Assessment

论文作者

Zhou, Wei, Min, Xiongkuo, Li, Hong, Jiang, Qiuping

论文摘要

自适应视频流的经验质量(QOE)评估在高级网络管理系统中起着重要作用。在HTTP(DASH)上具有动态自适应流媒体方案的情况下,它具有越来越复杂的特征,包括其他播放问题,这尤其具有挑战性。在本文中,我们简要概述了自适应视频流质量评估。在对相关作品的审查中,我们分析和比较客观QOE评估模型的不同变化,或者不使用机器学习技术进行自适应视频流。通过绩效分析,我们观察到混合模型的性能优于服务质量(QoS)驱动的QOE方法和信号保真度测量。此外,基于机器学习的模型在不使用机器学习的情况下略微胜过模型。此外,我们发现现有的视频流QOE评估模型仍然具有有限的性能,这使得很难应用于实践通信系统。因此,基于深度学习的功能表示对传统视频质量预测的成功,我们还应用了现成的深度卷积神经网络(DCNN)来评估流视频的知觉质量,其中流媒体视频的时空特性被考虑。实验证明了其优势,它阐明了未来设计的深度学习框架的未来开发,用于自适应视频流质量评估。我们认为,这项调查可以作为自适应视频流QOE评估的指南。

Quality of experience (QoE) assessment for adaptive video streaming plays a significant role in advanced network management systems. It is especially challenging in case of dynamic adaptive streaming schemes over HTTP (DASH) which has increasingly complex characteristics including additional playback issues. In this paper, we provide a brief overview of adaptive video streaming quality assessment. Upon our review of related works, we analyze and compare different variations of objective QoE assessment models with or without using machine learning techniques for adaptive video streaming. Through the performance analysis, we observe that hybrid models perform better than both quality-of-service (QoS) driven QoE approaches and signal fidelity measurement. Moreover, the machine learning-based model slightly outperforms the model without using machine learning for the same setting. In addition, we find that existing video streaming QoE assessment models still have limited performance, which makes it difficult to be applied in practical communication systems. Therefore, based on the success of deep learned feature representations for traditional video quality prediction, we also apply the off-the-shelf deep convolutional neural network (DCNN) to evaluate the perceptual quality of streaming videos, where the spatio-temporal properties of streaming videos are taken into consideration. Experiments demonstrate its superiority, which sheds light on the future development of specifically designed deep learning frameworks for adaptive video streaming quality assessment. We believe this survey can serve as a guideline for QoE assessment of adaptive video streaming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源