论文标题

预测撞击引起的关节速度在运动学控制器上的跳跃

Predicting Impact-Induced Joint Velocity Jumps on Kinematic-Controlled Manipulator

论文作者

Wang, Yuquan, Dehio, Niels, Kheddar, Abderrahmane

论文摘要

为了实现实用的机器人影响任务,预测联合速度跳跃对于执行控制器的可行性和硬件完整性至关重要。我们观察到与熊猫机械手的250个基准实验相比,机器人技术中常用方法的相当大的预测误差。我们将平均预测误差减少81.98%,如下所示:首先,我们专注于任务空间方程,而不反转未解决的关节空间惯性矩阵。其次,在影响事件发生之前,我们考虑了高增长(刚性)运动学控制的操纵器的表现,就像复合刚性的身体一样。

In order to enable on-purpose robotic impact tasks, predicting joint-velocity jumps is essential to enforce controller feasibility and hardware integrity. We observe a considerable prediction error of a commonly-used approach in robotics compared against 250 benchmark experiments with the Panda manipulator. We reduce the average prediction error by 81.98% as follows: First, we focus on task-space equations without inverting the ill-conditioned joint-space inertia matrix. Second, before the impact event, we compute the equivalent inertial properties of the end-effector tip considering that a high-gains (stiff) kinematic-controlled manipulator behaves like a composite-rigid body.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源