论文标题

预测MR引导干预措施的4D肝MRI

Predicting 4D Liver MRI for MR-guided Interventions

论文作者

Gulamhussene, Gino, Meyer, Anneke, Rak, Marko, Bashkanov, Oleksii, Omari, Jazan, Pech, Maciej, Hansen, Christian

论文摘要

器官运动在图像引导的干预措施中构成了尚未解决的挑战。为了解决这个问题,时间分辨的体积磁共振成像(4D MRI)的研究领域已经发展。但是,当前的技术不适合大多数介入设置,因为它们缺乏足够的时间和/或空间分辨率或具有长时间的收购时间。在这项工作中,我们提出了一种新颖的方法,用于实时高分辨率4D MRI,并具有较大的MR引导干预范围。为此,我们训练了端到端的卷积神经网络(CNN),以预测3D肝脏MRI,该MRI正确预测了来自受试者的现场2D导航器MRI,可以正确预测肝脏的呼吸状态。我们的方法可以通过两种方式使用:首先,它可以以高质量和高分辨率(209x128x128矩阵尺寸,各向同性1.8mm Voxel尺寸和0.6s/bouse)重建实时4D MRI(209x128x128矩阵尺寸),并给定动态介入2D导航器切片,以便在干预期间进行指导。其次,它可用于回顾性4D重建,时间分辨率低于0.2s/bouser,用于运动分析和用于放射治疗。我们报告的平均目标注册误差(TRE)为1.19 $ \ pm $ 0.74mm,低于体素大小。我们将结果与最先进的回顾性4D MRI重建进行了比较。视觉评估显示出可比的质量。我们表明,较短的收购时间至2分钟的小训练尺寸已经可以取得令人鼓舞的结果,而24分钟足以获得高质量的结果。因为我们的方法可以很容易地与较早的方法相结合,因此获取时间可以进一步减少,同时也可以限制质量损失。我们表明,对于4D MRI重建而言,端到端的深度学习表述非常有前途。

Organ motion poses an unresolved challenge in image-guided interventions. In the pursuit of solving this problem, the research field of time-resolved volumetric magnetic resonance imaging (4D MRI) has evolved. However, current techniques are unsuitable for most interventional settings because they lack sufficient temporal and/or spatial resolution or have long acquisition times. In this work, we propose a novel approach for real-time, high-resolution 4D MRI with large fields of view for MR-guided interventions. To this end, we trained a convolutional neural network (CNN) end-to-end to predict a 3D liver MRI that correctly predicts the liver's respiratory state from a live 2D navigator MRI of a subject. Our method can be used in two ways: First, it can reconstruct near real-time 4D MRI with high quality and high resolution (209x128x128 matrix size with isotropic 1.8mm voxel size and 0.6s/volume) given a dynamic interventional 2D navigator slice for guidance during an intervention. Second, it can be used for retrospective 4D reconstruction with a temporal resolution of below 0.2s/volume for motion analysis and use in radiation therapy. We report a mean target registration error (TRE) of 1.19 $\pm$0.74mm, which is below voxel size. We compare our results with a state-of-the-art retrospective 4D MRI reconstruction. Visual evaluation shows comparable quality. We show that small training sizes with short acquisition times down to 2min can already achieve promising results and 24min are sufficient for high quality results. Because our method can be readily combined with earlier methods, acquisition time can be further decreased while also limiting quality loss. We show that an end-to-end, deep learning formulation is highly promising for 4D MRI reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源