论文标题

飓风疏散期间的网络范围内动态交通预测的深度学习方法

A Deep Learning Approach for Network-wide Dynamic Traffic Prediction during Hurricane Evacuation

论文作者

Rahman, Rezaur, Hasan, Samiul

论文摘要

积极的疏散流量管理很大程度上取决于高时空分辨率以实时监控和对交通流量的预测。但是,由于预计飓风路径突然发生变化以及家庭疏散行为引起的不确定性,疏散交通预测具有挑战性。此外,建模时空交通流量模式需要在较长时间内进行大量数据,而撤离通常持续2至5天。在本文中,我们提出了一种新型的数据驱动方法,用于预测网络量表的疏散流量。我们开发了动态图卷积LSTM(DGCN-LSTM)模型,以了解飓风疏散的网络动态。我们首先训练该模型的非脱离期流量数据,表明该模型的表现优于现有的深度学习模型,用于预测非脱离期流量,RMSE值为226.84。但是,当我们将模型应用于撤离期时,RMSE值增加到1440.99。我们通过采用转移学习方法来克服这个问题,该方法具有与疏散交通需求有关的其他功能,例如撤离区的距离,登陆时间和其他区域级别的特征,以控制从非撤离期到撤离期的信息传递(网络动态)。最终传输学习的DGCN-LSTM模型表现良好,以预测疏散交通流(RMSE = 399.69)。可以应用实施的模型来预测更长的预测范围(6小时)。它将有助于运输机构激活适当的交通管理策略,以减少撤离流量的延迟。

Proactive evacuation traffic management largely depends on real-time monitoring and prediction of traffic flow at a high spatiotemporal resolution. However, evacuation traffic prediction is challenging due to the uncertainties caused by sudden changes in projected hurricane paths and consequently household evacuation behavior. Moreover, modeling spatiotemporal traffic flow patterns requires extensive data over a longer time period, whereas evacuations typically last for 2 to 5 days. In this paper, we present a novel data-driven approach for predicting evacuation traffic at a network scale. We develop a dynamic graph convolution LSTM (DGCN-LSTM) model to learn the network dynamics of hurricane evacuation. We first train the model for non-evacuation period traffic data showing that the model outperforms existing deep learning models for predicting non-evacuation period traffic with an RMSE value of 226.84. However, when we apply the model for evacuation period, the RMSE value increased to 1440.99. We overcome this issue by adopting a transfer learning approach with additional features related to evacuation traffic demand such as distance from the evacuation zone, time to landfall, and other zonal level features to control the transfer of information (network dynamics) from non-evacuation periods to evacuation periods. The final transfer learned DGCN-LSTM model performs well to predict evacuation traffic flow (RMSE=399.69). The implemented model can be applied to predict evacuation traffic over a longer forecasting horizon (6 hour). It will assist transportation agencies to activate appropriate traffic management strategies to reduce delays for evacuating traffic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源