论文标题
耦合$ ϕ^4 $,NLS和MKDV方程的超级双曲线扭结和脉冲解决方案
Superposed Hyperbolic Kink and Pulse Solutions of Coupled $ϕ^4$, NLS and MKdV Equations
论文作者
论文摘要
我们获得了耦合$ ϕ^4 $,耦合的非线性schrödinger(NLS)和耦合的修改后的Korteweg de Vries(MKDV)模型的新颖解决方案,可以将其作为两个超胆汁或两个超轻脉冲脉冲的总和或差异的线性叠加来重新表达。这些结果表明,超跨溶液的概念也扩展到耦合的非线性方程。
We obtain novel solutions of a coupled $ϕ^4$, a coupled nonlinear Schrödinger (NLS) and a coupled modified Korteweg de Vries (MKdV) model which can be re-expressed as a linear superposition of either the sum or the difference of two hyperbolic kink or two hyperbolic pulse solutions. These results demonstrate that the notion of superposed solutions extends to coupled nonlinear equations as well.