论文标题

通过防铁磁交换的强大下层拓扑晶体管作用

Robust Subthermionic Topological Transistor Action via Antiferromagnetic Exchange

论文作者

Banerjee, Sagnik, Jana, Koustav, Basak, Anirban, Fuhrer, Michael S, Culcer, Dimitrie, Muralidharan, Bhaskaran

论文摘要

扣除2D-Xenes中的拓扑量子场效应转变可能会被设计为实现亚热晶体管操作,并与无耗散的无国内传导相结合。实质性设备设计策略以利用这将需要深入研究量子场效应阶段与带绝缘子阶段之间的量子场效应过渡的物理。在研究可行的设备结构时,我们发现了由门控机制构成的基本子阈值限制,从而影响了这种过渡,从而强调了对材料和设备结构的创新需求。详细介绍了与量子自旋霍尔效应相变相关的复杂频带翻译物理学,这表明可以以牺牲无耗散的状态传导为代价来设计击败热限制的门控策略。然后证明,通过接近性耦合在材料中引入的平面外抗磁磁交换可以促进量子自旋 - 瓦利大厅和自旋量子异常霍尔相之间的过渡,这最终可以确保在超过热量限制的同时确保状态的拓扑鲁棒性。因此,我们的工作强调了使用量子材料来建立拓扑晶体管的操作标准,这些量子材料可以克服鲍尔茨曼的暴政,同时保持拓扑鲁棒性。

The topological quantum field-effect transition in buckled 2D-Xenes can potentially be engineered to enable sub-thermionic transistor operation coupled with dissipationless ON-state conduction. Substantive device design strategies to harness this will necessitate delving into the physics of the quantum field effect transition between the dissipationless topological phase and the band insulator phase. Investigating workable device structures, we uncover fundamental sub-threshold limits posed by the gating mechanism that effectuates such a transition, thereby emphasizing the need for innovations on materials and device structures. Detailing the complex band translation physics related to the quantum spin Hall effect phase transition, it is shown that a gating strategy to beat the thermionic limit can be engineered at the cost of sacrificing the dissipationless ON-state conduction. It is then demonstrated that an out-of-plane antiferromagnetic exchange introduced in the material via proximity coupling can incite transitions between the quantum spin-valley Hall and the spin quantum anomalous Hall phase, which can ultimately ensure the topological robustness of the ON state while surpassing the thermionic limit. Our work thus underlines the operational criteria for building topological transistors using quantum materials that can overcome the Boltzmann's tyranny while preserving the topological robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源