论文标题

Xautoml:一种可视化分析工具,用于理解和验证自动化机器学习

XAutoML: A Visual Analytics Tool for Understanding and Validating Automated Machine Learning

论文作者

Zöller, Marc-André, Titov, Waldemar, Schlegel, Thomas, Huber, Marco F.

论文摘要

在过去的十年中,已经提出了各种自动化机器学习(AUTOM)系统,以建立端到端的机器学习(ML)管道,以最少的人类交互作用。尽管这种自动合成的ML管道能够实现竞争性能,但最近的研究表明,由于汽车系统缺少透明度以及对构建的ML管道的缺少解释,因此用户不信任由AutoML构建的模型。在与来自不同专业的36个领域专家,数据科学家和汽车研究人员的需求分析研究中,我们在ML方面具有截然不同的专业知识,我们收集了对汽车的详细信息需求。我们提出了Xautoml,这是一种交互式视觉分析工具,用于解释由Automl构建的任意自动化优化程序和ML管道。 Xautoml将交互式可视化与可解释的人工智能(XAI)的既定技术相结合,以使完整的自动化程序透明且可解释。通过将Xautoml与Jupyterlab集成,经验丰富的用户可以根据从Xautoml提取的信息进行临时可视化扩展视觉分析。我们从需求分析中与相同的用户组相同的用户研究中验证了我们的方法。所有参与者都能够从Xautoml中提取有用的信息,从而显着增加了对Automl和Automl优化本身产生的ML管道的理解。

In the last ten years, various automated machine learning (AutoM ) systems have been proposed to build end-to-end machine learning (ML) pipelines with minimal human interaction. Even though such automatically synthesized ML pipelines are able to achieve a competitive performance, recent studies have shown that users do not trust models constructed by AutoML due to missing transparency of AutoML systems and missing explanations for the constructed ML pipelines. In a requirements analysis study with 36 domain experts, data scientists, and AutoML researchers from different professions with vastly different expertise in ML, we collect detailed informational needs for AutoML. We propose XAutoML, an interactive visual analytics tool for explaining arbitrary AutoML optimization procedures and ML pipelines constructed by AutoML. XAutoML combines interactive visualizations with established techniques from explainable artificial intelligence (XAI) to make the complete AutoML procedure transparent and explainable. By integrating XAutoML with JupyterLab, experienced users can extend the visual analytics with ad-hoc visualizations based on information extracted from XAutoML. We validate our approach in a user study with the same diverse user group from the requirements analysis. All participants were able to extract useful information from XAutoML, leading to a significantly increased understanding of ML pipelines produced by AutoML and the AutoML optimization itself.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源