论文标题

从不对称的简单排除过程到kpz固定点的固定度量

From the asymmetric simple exclusion processes to the stationary measures of the KPZ fixed point on an interval

论文作者

Bryc, Wlodek, Wang, Yizao, Wesolowski, Jacek

论文摘要

Barraquand和Le〜doussal在与Neumann边界条件的间隔内提出了(猜想)KPZ固定点的一系列固定措施,并预测它们是KPZ通用类中所有模型的固定度量的缩放限制。在本文中,我们表明,随着稳定状态下的开放不对称简单排除过程的高度增量过程的缩放限制,KPZ固定点的固定度量会出现,并且随着系统的大小趋于无限。

Barraquand and Le~Doussal introduced a family of stationary measures for the (conjectural) KPZ fixed point on an interval with Neumann boundary conditions, and predicted that they arise as scaling limit of stationary measures of all models in the KPZ universality class on an interval. In this paper, we show that the stationary measures for KPZ fixed point on an interval arise as the scaling limits of the height increment processes for the open asymmetric simple exclusion process in the steady state, with parameters changing appropriately as the size of the system tends to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源