论文标题
多项式有效等分
Polynomial effective equidistribution
论文作者
论文摘要
对于$ \ permatatorName {sl} _2(slbb c c)$ _2(\ mathbb c c)$ _2(\ mathbb c)$ _2(\ mathbb c)$和$ operatearme,我们证明了具有多项式错误率的有效等式定理,并具有多项式错误率。 r)\ times \ operatorname {sl} _2(\ mathbb r)$。证明是基于使用Margulis功能,发病率几何形状的工具以及环境空间的光谱间隙。
We prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent subgroups of $\operatorname{SL}_2(\mathbb R)$ in arithmetic quotients of $\operatorname{SL}_2(\mathbb C)$ and $\operatorname{SL}_2(\mathbb R)\times\operatorname{SL}_2(\mathbb R)$. The proof is based on the use of a Margulis function, tools from incidence geometry, and the spectral gap of the ambient space.