论文标题

自行车可以通过随机最佳反馈控制来平衡,但只有准确的速度估计

A bicycle can be balanced by stochastic optimal feedback control but only with accurate speed estimates

论文作者

Maris, Eric

论文摘要

平衡自行车是平衡控制的典型特征,即人类作为整个行为范围的一部分(步行,跑步,滑冰,滑雪等)。本文提出了平衡控制的一般模型,并将其应用于自行车的平衡。平衡控制同时具有物理(力学)和神经生物学成分。物理成分与控制骑手及其自行车运动的法律有关,而神经生物学成分与中枢神经系统(CNS)使用这些法律进行平衡控制的机制有关。本文基于随机最佳反馈控制(OFC)的理论,介绍了该神经生物学成分的计算模型。该模型中的中心概念是CNS中实现的计算系统,该计算系统控制CNS之外的机械系统。该计算系统使用内部模型来计算由随机最佳反馈控制理论(OFC)指定的最佳控制动作。为了使计算模型具有合理性,至少两个不可避免的不准确性必须是健壮的:(1)CNS从与CNS附着的身体和自行车的相互作用中缓慢学习的模型参数(即,内部噪声协方差矩阵),以及(2)依赖于无内置的感觉(即依赖于无内在的感觉)的模型参数(即内部噪声协方差矩阵)。通过模拟,我证明了该模型可以在现实条件下平衡自行车,并且在学习的感觉运动噪声特征中不准确。但是,该模型在运动速度估计中的不准确性并不强。这对随机OFC作为平衡控制模型的合理性具有重要意义。

Balancing a bicycle is typical for the balance control humans perform as a part of a whole range of behaviors (walking, running, skating, skiing, etc.). This paper presents a general model of balance control and applies it to the balancing of a bicycle. Balance control has both a physics (mechanics) and a neurobiological component. The physics component pertains to the laws that govern the movements of the rider and his bicycle, and the neurobiological component pertains to the mechanisms via which the central nervous system (CNS) uses these laws for balance control. This paper presents a computational model of this neurobiological component, based on the theory of stochastic optimal feedback control (OFC). The central concept in this model is a computational system, implemented in the CNS, that controls a mechanical system outside the CNS. This computational system uses an internal model to calculate optimal control actions as specified by the theory of stochastic optimal feedback control (OFC). For the computational model to be plausible, it must be robust to at least two inevitable inaccuracies: (1) model parameters that the CNS learns slowly from interactions with the CNS-attached body and bicycle (i.e., the internal noise covariance matrices), and (2) model parameters that depend on unreliable sensory input (i.e., movement speed). By means of simulations, I demonstrate that this model can balance a bicycle under realistic conditions and is robust to inaccuracies in the learned sensorimotor noise characteristics. However, the model is not robust to inaccuracies in the movement speed estimates. This has important implications for the plausibility of stochastic OFC as a model for balance control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源