论文标题
司法之间的形态
Morphisms between Grassmannians
论文作者
论文摘要
用$ \ mathbb g(k,n)$表示$ \ mathbb p^n $的线性子空间的grassmannian。我们表明,如果$ n> m $,则每个形态$φ:\ mathbb g(k,n)\ to \ mathbb g(l,m)$都是恒定的。
Denote by $\mathbb G(k,n)$ the Grassmannian of linear subspaces of dimension $k$ in $\mathbb P^n$. We show that if $n>m$ then every morphism $φ: \mathbb G(k,n) \to \mathbb G(l,m)$ is constant.