论文标题
恒定cuntz类的同义
Homotopies of constant Cuntz class
论文作者
论文摘要
令$ a $为一个Unital简单可分开的精确c $^*$ - 代数,大约可以分开并且实际等级为零。我们证明,与固定Cuntz类的$ A $中的一组正元素是连接的。该结果特别适用于非理性旋转代数和AF代数。
Let $A$ be a unital simple separable exact C$^*$-algebra which is approximately divisible and of real rank zero. We prove that the set of positive elements in $A$ with a fixed Cuntz class is path connected. This result applies in particular to irrational rotation algebras and AF algebras.