论文标题

通过计算强化方法,低维的高保真动力学模型

Low-Dimensional High-Fidelity Kinetic Models for NOX Formation by a Compute Intensification Method

论文作者

Kelly, Mark, Dunne, Harry, Bourque, Gilles, Dooley, Stephen

论文摘要

设计和演示了一种新颖的计算强化方法,用于构建NOX形成的低维,高保真的“紧凑”动力学模型。该方法适应了数据密集型机器通过使用拉丁正方形方法来生成虚拟反应网络的生成,以了解化学动力学(MLOCK)算法的优化。定义了一组逻辑规则,该规则构建了一个最小尺寸的虚拟反应网络,其中包含三个其他节点(N,NO,NO,NO2)。该NOX虚拟反应网络附加到包含15个节点的甲烷燃烧的预先存在的紧凑型模型。 由MLOCK编码算法处理所得的18个节点虚拟反应网络,以在甲烷燃烧过程中生成众多的NOX形成的众多紧凑型模型候选。自动;用候选输入填充虚拟反应网络的术语;衡量由此产生的紧凑型模型候选者的成功(在重现一系列燃气轮机行业定义的性能目标时);选择输入参数空间的区域,显示最佳性能模型;完善输入参数以提供更好的性能;并最终选择最佳性能模型或模型。 通过这种方法,存在许多紧凑的候选者,这些候选者在重现行业定义的绩效目标中显示出超过75%的保真度,其中一种模型在0.5-1.0的燃料/空气等效率上有效为75%。但是,为了满足行业定义的完整燃料/空气等效性比率性能信封,我们表明,使用这个最小的虚拟反应网络,需要进一步的两个紧凑型模型。

A novel compute intensification methodology to the construction of low-dimensional, high-fidelity "compact" kinetic models for NOX formation is designed and demonstrated. The method adapts the data intensive Machine Learned Optimization of Chemical Kinetics (MLOCK) algorithm for compact model generation by the use of a Latin Square method for virtual reaction network generation. A set of logical rules are defined which construct a minimally sized virtual reaction network comprising three additional nodes (N, NO, NO2). This NOX virtual reaction network is appended to a pre-existing compact model for methane combustion comprising fifteen nodes. The resulting eighteen node virtual reaction network is processed by the MLOCK coded algorithm to produce a plethora of compact model candidates for NOX formation during methane combustion. MLOCK automatically; populates the terms of the virtual reaction network with candidate inputs; measures the success of the resulting compact model candidates (in reproducing a broad set of gas turbine industry-defined performance targets); selects regions of input parameters space showing models of best performance; refines the input parameters to give better performance; and makes an ultimate selection of the best performing model or models. By this method, it is shown that a number of compact model candidates exist that show fidelities in excess of 75% in reproducing industry defined performance targets, with one model valid to >75% across fuel/air equivalence ratios of 0.5-1.0. However, to meet the full fuel/air equivalence ratio performance envelope defined by industry, we show that with this minimal virtual reaction network, two further compact models are required.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源