论文标题
使用纵向结构MRI基于离群值的自闭症检测
Outlier-based Autism Detection using Longitudinal Structural MRI
论文作者
论文摘要
使用临床评估(认知测试)对自闭症谱系障碍(ASD)的诊断,由于个体之间的差异很大。由于不存在有效的治疗,因此迅速而可靠的ASD诊断可以有效制定治疗方案。本文提出了通过异常检测方法基于结构性磁共振成像(SMRI)的ASD诊断。为了学习结构大脑连接性的时空模式,生成对抗网络(GAN)仅通过SMRI扫描健康受试者进行训练。给定三个相邻切片作为输入,GAN发电机重建了接下来的三个相邻切片。然后,GAN判别器将ASD SMRI扫描重建视为离群值。将该模型与另外两个基线进行比较 - 一个简单的UNET和一个复杂的自我注意力。来自多站点遵守II数据集的轴向,冠状和矢状SMRI切片用于评估。广泛的实验表明,我们的ASD检测框架与最先进的训练数据相当。此外,纵向数据(随着时间的时间进行两次扫描)的精度比横截面数据高17-28%(每受试者一项扫描)。除其他发现外,用于模型训练的指标以及重建损耗计算影响检测性能,并发现冠状模态最能为ASD检测编码结构信息。
Diagnosis of Autism Spectrum Disorder (ASD) using clinical evaluation (cognitive tests) is challenging due to wide variations amongst individuals. Since no effective treatment exists, prompt and reliable ASD diagnosis can enable the effective preparation of treatment regimens. This paper proposes structural Magnetic Resonance Imaging (sMRI)-based ASD diagnosis via an outlier detection approach. To learn Spatio-temporal patterns in structural brain connectivity, a Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects. Given a stack of three adjacent slices as input, the GAN generator reconstructs the next three adjacent slices; the GAN discriminator then identifies ASD sMRI scan reconstructions as outliers. This model is compared against two other baselines -- a simpler UNet and a sophisticated Self-Attention GAN. Axial, Coronal, and Sagittal sMRI slices from the multi-site ABIDE II dataset are used for evaluation. Extensive experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data. Furthermore, longitudinal data (two scans per subject over time) achieve 17-28% higher accuracy than cross-sectional data (one scan per subject). Among other findings, metrics employed for model training as well as reconstruction loss computation impact detection performance, and the coronal modality is found to best encode structural information for ASD detection.