论文标题

统计和拓扑总结辅助疾病检测分段视网膜血管图像

Statistical and Topological Summaries Aid Disease Detection for Segmented Retinal Vascular Images

论文作者

Nardini, John T., Pugh, Charles W. J., Byrne, Helen M.

论文摘要

疾病并发症会改变血管网络形态并破坏组织功能。例如,糖尿病性视网膜病是1型和2型糖尿病的并发症,可能引起失明。通过视觉检查视网膜图像来评估微血管疾病,但是当疾病表现出无声症状或患者无法参加面对面的会议时,这可能是具有挑战性的。我们研究了在对分段视网膜血管图像的统计和拓扑摘要进行培训时,在检测微血管疾病中的机器学习算法的性能。我们将方法应用于三个公共可用数据集,并发现,在我们考虑的13个总数描述符向量中,一个统计盒计数描述符向量或拓扑洪水描述符矢量可在这些数据集中达到最高的精度水平。然后,我们通过合并几个数据集创建了第四个数据集:盒子计数向量优于该数据集上的所有描述符,包括对组合数据集中注释样式差异敏感的拓扑洪水向量。我们的工作是确定哪种计算方法最适合识别微血管疾病以及其当前局限性的第一步。从长远来看,这些方法可以纳入自动化疾病评估工具中。

Disease complications can alter vascular network morphology and disrupt tissue functioning. Diabetic retinopathy, for example, is a complication of types 1 and 2 diabetes mellitus that can cause blindness. Microvascular diseases are assessed by visual inspection of retinal images, but this can be challenging when diseases exhibit silent symptoms or patients cannot attend in-person meetings. We examine the performance of machine learning algorithms in detecting microvascular disease when trained on statistical and topological summaries of segmented retinal vascular images. We apply our methods to three publicly-available datasets and find that, among the 13 total descriptor vectors we consider, either a statistical Box-counting descriptor vector or a topological Flooding descriptor vector achieves the highest accuracy levels on these datasets. We then created a fourth dataset by merging several datasets: the Box-counting vector outperforms all descriptors on this dataset, including the topological Flooding vector which is sensitive to differences in the annotation styles within the combined dataset. Our work represents a first step to establishing which computational methods are most suitable for identifying microvascular disease as well as some of their current limitations. In the longer term, these methods could be incorporated into automated disease assessment tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源