论文标题
量子电路,用于在量子计算机上制备自旋特征功能
Quantum circuits for the preparation of spin eigenfunctions on quantum computers
论文作者
论文摘要
量子算法在许多粒子量子系统的研究中的应用需要准备与所研究系统行为相关的波形。哈密顿对称性是一种重要的工具,可以对相关的多个粒子波函数进行分类,并提高数值模拟的效率。在这项工作中,列出了量子电路,以确切和近似制备量子计算机上总自旋特征功能的制备。讨论并比较了两种不同的策略:基于角动量的加法定理的总自旋本本函数的精确递归结构,以及基于合适的成本函数的变异优化的总自旋本征函数的启发式近似。详细说明了这些量子电路的构造,并在IBM量子设备上证明了总自旋本征的制备,重点是具有三角形连接的图形上的3和5旋转系统。
The application of quantum algorithms to the study of many-particle quantum systems requires the ability to prepare wavefunctions that are relevant in the behavior of the system under study. Hamiltonian symmetries are an important instrument, to classify relevant many-particle wavefunctions, and to improve the efficiency of numerical simulations. In this work, quantum circuits for the exact and approximate preparation of total spin eigenfunctions on quantum computers are presented. Two different strategies are discussed and compared: exact recursive construction of total spin eigenfunctions based on the addition theorem of angular momentum, and heuristic approximation of total spin eigenfunctions based on the variational optimization of a suitable cost function. The construction of these quantum circuits is illustrated in detail, and the preparation of total spin eigenfunctions is demonstrated on IBM quantum devices, focusing on 3- and 5-spin systems on graphs with triangle connectivity.