论文标题

在形状和稳定性假设下,Gröbner基础的订单算法更快更改

Faster change of order algorithm for Gröbner bases under shape and stability assumptions

论文作者

Berthomieu, Jérémy, Neiger, Vincent, Din, Mohab Safey El

论文摘要

使用Gröbner基础求解零维的多项式系统通常是通过计算逆向词典阶层的Gröbner基础来完成的,然后下一个计算词典Gröbner基础以更改订单算法的基础。目前,订单的变化现在需要许多通用实例的整个解决时间。 就像已知的订单算法变化最快的变化一样,这项工作集中在系统定义的理想情况下满足可以在通用坐标中恢复的自然属性的情况。首先,理想具有\ emph {shape}词典gröbner基础。其次,相对于度反向词法顺序的一组领先术语具有\ emph {稳定性}属性;特别是,可以在输入gröbner的基础上读取乘法矩阵。 当前最快的算法依赖于该矩阵的稀疏性。实际上,这种稀疏性是代数结构的结果,可以利用该结构将矩阵表示为单变量多项式基质。我们表明,在涵盖形状位置案例的假设下,该基质的Hermite正常形式产生了寻求的词典Gröbner基础。在某种温和的假设中,暗示$ n \ le t $,我们算法的算术复杂性是$ o \ tilde {〜}(t^{ω-1} d)$矩阵乘法。这在两个最新的复杂性范围$ o \ tilde {〜}(td^2)$和$ o \ tilde {〜}(d^ω)$上都有所改善,因为$ω<3 $和$ t \ t \ t \ le d $。基于库MSLOVE和PML的实践实验证实了很高的实际收益。

Solving zero-dimensional polynomial systems using Gröbner bases is usually done by, first, computing a Gröbner basis for the degree reverse lexicographic order, and next computing the lexicographic Gröbner basis with a change of order algorithm. Currently, the change of order now takes a significant part of the whole solving time for many generic instances. Like the fastest known change of order algorithms, this work focuses on the situation where the ideal defined by the system satisfies natural properties which can be recovered in generic coordinates. First, the ideal has a \emph{shape} lexicographic Gröbner basis. Second, the set of leading terms with respect to the degree reverse lexicographic order has a \emph{stability} property; in particular, the multiplication matrix can be read on the input Gröbner basis. The current fastest algorithms rely on the sparsity of this matrix. Actually, this sparsity is a consequence of an algebraic structure, which can be exploited to represent the matrix concisely as a univariate polynomial matrix. We show that the Hermite normal form of that matrix yields the sought lexicographic Gröbner basis, under assumptions which cover the shape position case. Under some mild assumption implying $n \le t$, the arithmetic complexity of our algorithm is $O\tilde{~}(t^{ω-1}D)$, where $n$ is the number of variables, $t$ is a sparsity indicator of the aforementioned matrix, $D$ is the degree of the zero-dimensional ideal under consideration, and $ω$ is the exponent of matrix multiplication. This improves upon both state-of-the-art complexity bounds $O\tilde{~}(tD^2)$ and $O\tilde{~}(D^ω)$, since $ω< 3$ and $t\le D$. Practical experiments, based on the libraries msolve and PML, confirm the high practical benefit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源